
1 
 

Webcam as a HID 

For fun, I made a doodle desk; any (neutral) surface will do.  (Don’t use a “wood grain” surface as this 

causes no end of confusion to the system) 

1. Introduction 
Summary. Uses webcam and paper cut outs as tangible UI controls. 

Related projects 

 WCam. 

  Touchless – mainly looks for a point size and color. 

Outline 
 Introduction to the design, my goals, how the system is structured, the controls and actions  

 Software Architecture.  Structure of properties, events and actions.  Video processing, 

architecture,  analysis of visual objects.  The audio processing 

 Hardware Architecture and Power supply 

 How to set up hardware and software build 

 Performance profile 

 How to get it do something useful 

 How to calibrate 

 Conclusion 

Design goals. 
Interaction goals.  Appropriate feedback.  Immersive in phenomenon (esp. underlying phenomena) 

Fun. 

Overview of how the system work 
Overall, the system maps a scene from the camera to an abstract representation of the controls and 

finally to actions. 



2 
 

Figure 1: System process overview 

Controls Actions

ActionsEventSender

Camera  

The controls map the scene to events that trigger the actions. 

Types of visual controls a user can use / make. 
Some examples of the controls: 

Table 1: Visual controls 

Name Example Description 

Slider 

 

A rectangle with a circle or rectangle inside can be used to control 
something from the range 0...1 by sliding the inner shape along the 
long axis.  When the inner shape is obscured, the item is considered 
clicked, but the value is not known. 

Knob 

 

A circle containing a circle or rectangle can be used to control 
something from the range 0...1 by rotating the knob. 

Pointer 

 

A circle with a circle at the center is a mouse, and acts a pointer and 
select items. 

Button 

 

When the inner shape is obscured, the item is considered clicked, 
but the value is not known.  When it is seen again, it is considered 
released. 

Button box 

 

Several buttons, each as part of a group 

 

Actions that be taken 
The system connects (loosely) the controls to the following actions: 

 Play sound 

 Stop sound 

 Pause sound 

 Skip ahead 

 Skip back 

 Move mouse pointer 



3 
 

Modules, Directories and Classes 
External Parts, SDKs used in the application 

 XP, Vista, Win 7, Windows CE 

 Webcam (Logitech 9000) $100 

 DirectX (Direct Sound), Direct Show. 

 webcam.dll 

 FFMPEG 

 Written in C# (.NET) , since it's convenient to prototype with – there are a lot wrappers to a lot 

file formats, media types, and actions.  And I can publish the steps along the way. 

Table 2: Directory structure (directory per module) 

Directory Description 

Audio Objects related playing sound 
Colors Color space definition and transformations 
COM Code to wrap COM interfaces 
Controls  
Decomposition Analysis breaks down image into parts 
DirectShow DirectShow wrappers and helper proxies 
Ffmpeg  
Image Manipulates an image 
Math Math related helper objects 
Structure How the visual object relate to each other 
Win32 Wrappers, structures and interfaces specific to windows 

 

Table 3: Main Classes in application 

Class Description 

AudioFile A specific file wrapper 
Control Family of controls a user can use and links to actions. 
DSIO DirectShow IO abstract class 
FlipVideo Flips the video 
DirectShowGraph A wrapper around DirectShow’s GraphBuilder, with some helper conventions 
DirectShowNode Most filter nodes, and have class for certain special filters 
LightPaint Figures out where the pen light is 
Matrix A mathematical family of types used to represent matrices and the many 

transforms. 
Overlay Overlays pen strokes onto a video stream 
Vector A mathematical family of types used to represent vectors, position and its 

derivatives. 
VideoSource Cameras, mainly.  Derived from DirectShowNode 
ZObject The basis for object graphs in this project 

 

Example figures: 



4 
 

 Movie showing mouse movement, clicks, drawing (split screen) 

 Movie showing drawing and mouse movement (Split screen) 

 OCR and scanned text (before and after) 

 Movie showing button like controls 

 Movie showing frame key in 

2. How the system works, system’s structuring mechanisms and things 

are represented 
An outline of the section: 

 Structuring mechanisms 

 Properties 

 Event distribution and handling 

 Actions 

Structuring mechanism 
The system is structured using object graphs as the basis for behaviour.   This graph is directed, and 

represents context and scope.  Properties are not retrieved from a specific object – they are effect of the 

graph.  The same is true for events and event handling.  Events are distributed in the graph in a 

structured way, seldom does an object need to explicitly subscribe.  Objects themselves are often 

proxies for framework behaviour or actually implementations of specific behaviour. 

Properties are access by name, type, neither or both.  Properties are not explicitly classed as essential, 

intrinsic, or incidental – that is, we don’t track whether the property is a key to the identity of an item. 

Links to these are primarily thru sending events (which may trigger other events) and fetching properties.   

Most of the system relies on ZObject as a base class, which implements the object graph and the basic 

operations on the graph.  (This class also restricts its portion of the graph to a directed acyclic graph.) 

There are also Helper objects that represent state and operations: matrices, vectors, and their methods 

(or delegates to them) 

Properties 
When a property value is to be fetched, the system searches the object graph in the following order, 

taking the first answer it finds: 

 Checks the item first to see if it can respond 

 Checks the linked visual object (if a control) 

 Checks the children 

 Checks the ancestors (but not their children) 

The system can find items by name, type or both name and type. 



5 
 

 The name is a string.  If name isn’t specified, it is a wild card. 

 The type is a System.Type reference.  If type isn’t specified, it is a wild card.  Prefer to use the 

closest to base that distinguishes type. 

Table 4: Property names and types 

Property Name String Name Type Description 

Angle angle double The angle of rotation 
kAudioSink sink(audio) object  
kAudioSource source(audio)  Used to find the audio source of a 

network 
kAudioSource2 source(audio,url)   
Bounds bounds Size  
Center center Point  
Color color Color  
Control control Project . 

Control 
 

Frame frame Size  
kLooping looping   
kNumberOfChannels channels   
kNumberOfSamples length(samples)  In a sound, the number of samples in the 

audio file 
kSampleRate samples/second  The number of samples per second 
kSampleWindow samples/window  The preferred buffer size, in terms of 

samples.  Multiply by number of  
channels and size of sample. 

kind kind Type  
Radius radius double  
kVolume volume   
state state ZState Unknown, pressed, released 
visual visual VisualObject  

Events 
Events are sent using a neighborly distribution, without an event pipeline/queue.   Events indicate what 

has changed,  not how it changed, what drove the change nor what it changed to.  Two event handlers 

are called: one (willProcess) to at the start of the event processing, and the other (didProcess) at the end. 

1. willProcessEvent is raised 

2. Sends will event to children (each child receives a willProcessParentEvent being raised.  This is 

sent in Depth first order: to the senders first child (A), then to A’s first child (and so on), then 

rest of A’s children in a similar way, then the rest of the sender’s children in a similar way. 

3. Sends will event to parent.  Each successive ancestor receives a willProcessChildEvent call.  This 

is raised from the most distance first, to the immediate parent last. 

4. OnEvent is raised 

5. Sends did event to children 



6 
 

6. Sends did event to parent.  This is raised from the most distance first, to the immediate parent 

last. 

7. didProcessEvent is raised 

Note: processing is stopped if anyone cancels the event.  Event handlers should not retain the event 

structure. 

The following kinds of events 

Table 5: Kinds of events used in the system 

Event Description 

FileEnd We have reach the end of a file 
FrameAcquire An event sent before and after the receipt or grabbing of a frame 
FrameAnalyze An event sent before and after the scanning a frame 
ObjectAdded An object was added to the list of objects being tracked 
ObjectLost An item that was previously visible is no longer visible 
ObjectFound An item that was previously visible, then lost, is now visible again 
BufferReady  
Moved The items position has changed 
SizeChanged  
OrientationChanged  
Pressed The button was pressed 
Released  
ValueChanged  
Start An event used to start a long running action, like playing a sound 
Stop  
Pause  

 

The event argument structure is includes: 

 The kind of event (See above), 

 Whether or not the event was cancelled, and 

 An optional link to an image frame (if any). 

 The event arguments are not part of the object graph, although it was considered.  (It was dropped for 

performance reasons) 

Actions 
Actions are not directly triggered.  Some nodes in the graph corresponding to action respond to events.   

They are triggered by the events sent by controls.  Some actions connect directly to the controls so that 

they get the right control. 

Long running actions – like playing a song – are broken down into smaller actions like start, stop and 

pause.  Each of the actions send an event that they are happening. 



7 
 

The actions include  (expand table from section 1): 

Action   

Play audio   
stop   
Pause   
Resume   
Skip ahead   
Skip back   
Scratch sound   
Move mouse pointer   
Button down   
Button up   

 

Controls 
Include some event handler API’s similar to System.Windows.Forms.Controls events: 

 OnGotFocus, 

 OnLostFocus, 

 OnMove. 

3. Composition of visual objects into controls 
The following diagram describes the overall process of mapping a video frame to the controls the 

system knows about.  We will look into more about the controls and how shapes map to a control 

structure.  Then we’ll look at the kinds of shapes that can be recognized, and how we determine the 

shapes, position, orientation, and change. 

Figure 2: Image to control processing 

Shape 

we’re 

tracking

Things 

possibly in 

image

ControlsMap

 

A control is composed of shapes, their properties and how they go together.  There are two kinds of 

shapes: rectangles and circles.  The nesting (parent-child relationship) to identifying what kind of control 

it is.  Properties relevant to composition include such things as orientation and position, visible.   



8 
 

Controls are identified by their object graph of shapes.  A shape is mapped to a control.  If it doesn’t 

map to any the system, sees if it is new, looking for patterns in control see if it should add it. 

How visual objects go together 
Containing relationship (aka parent-child relationship). 

Table 6: Structural composition of common controls 

Control Primary Shape Child Description 

Button Either None  
Mouse Circle Either The child must be centered in the circle 
Slider Rectangle either  
Knob Circle either The child is off center 

 

A control can be contained within another control.  For instance, a button is contained within a slider. 

Assigning left/right/index 

Atomic Shape analysis 
Determining what shape an item is.  We must answer the following kinds of questions for each shape: 

 How we know it is that shape 

 How we know it’s center (in more precision than the initial estimate) 

 How we know its size 

 How we know its angle of orientation 

Kinds of shape: circle, rectangle 

Table 7: Shape analysis 

Circle 

How we know it is a circle edge distance to center has low variance 
How we find corners n/a 
How we find center Key points on edge are used with determinant method to triangulate 
How we find size  
How we find orientation n/a 

Rectangle 

How we know it is a rectangle It isn’t a circle 
How we find corners Points at the Min X, max X 

Point furthest along axis (8 points), quadrant around center 
How we find center Intersection between corners 
How we find size Based on corners 
How we find orientation law of cosines (Arccos) between corners its size and where the corners 

actually are to find for theta orientation 

Triangle 

How we know it is a triangle ? 



9 
 

How we find corners Not clear.  Based on rectangle 
How we find center Halfway along an axis.  or Circle determinant? 
How we find size Based on corners 
How we find orientation Law of cosines to tee? 

Tracking visual objects 
The system tries to keep track of visual objects by shape, color, size and last position. 

Principles: shapes are persistent, size, shape doesn’t change, color doesn’t change.  So we go and look 

for similar shapes; we use a ranking system to calculate perceptual distance, and choose the least far 

way item. 

If you are going to take them off the desk, they need to be unique.  Otherwise how would the system 

know which control it is? 

Mapping possible shapes found in an image to the ones we are tracking 
Besides looking for an item with the same key characteristics, then choose item least distance away. 

4. Image processing 
This section includes a discussion of: 

 Simplifying assumptions 

 Direct Show 

 Image processing steps 

 Camera stabilization 

 Camera correction 

 How we map hypothesized items to a tracked item. 

Simplifying assumptions 
The system is built to work with a 2D surface.  This allows me to make many simplifications: 

 There will be no depth or perspective issues.  No shadow or parallax. 

 Items don’t change scale. 

 The affine  angle of rotation is (essentially)the same of for the x and y axis 

 There is little or no affine shear in the how an object moves across the surface 

 A visual object’s color doesn’t change 

 Color doesn’t really matter 

 A visual object doesn’t change shape 

Development Environment 
My development environment does not quite match the deployment environment.  I’m running it as a 

C# with DirectShow and NAudio.dll on Windows 7.  I’m deploying on Windows CE, with a WebCam.dll 

and some bits to replace the missing pieces in NAudio.dll. 



10 
 

Direct Show 

DirectShow was used on a Windows PC to prototype the visual acquisition.  First a quick overview of 

DirectShow.  Software built using DirectShow employs component (object) graphs to do its work, and 

create the overall behaviour.  Some components are the ones I definitely want – video camera– some 

add features, and a few are needed to connect it all.  When the graph is built and run, DirectShow goes 

thru and makes sure each node agrees on the exact media formats that will be provided.  I enjoy object 

graphs as a design structuring technique, yet I found DirectShow a challenge to master. 

In a sense, you lay out the basic schematic of the system – or at least the DirectShow portion – then 

create code to do the fine details and add functionality.  Prototyping a graph (schematic) can be done 

with GraphEdit (or Monograph EditStudio).  These tools have a large catalog of the pieces, making it 

easy to try different ideas out.   Then you can layout the pieces and see if they go together (I found that 

some pieces just do not) and test it. 

Video formats, in order of preference: 

 I420 – one buffer for gray scale (luminance), and two for U and V.  The other two are half the 

height and half the width. 

 YUY2 – Y0, U0, Y1, V0, Y2, U2, Y3, V2, Y4, U4, Y5, V4: reflects the Bayer pattern 

 RGB24 – blue, red, green 

Why prefer these?  If the hardware can convert it to gray scale for me, why not use it?  It’s probably 

faster, more accurate overall.  But I need to prefer the kind that the Windows CE environment will have. 

Windows CE and WebCam.dll 

To understand how we get the camera’s video frames, we need to explain Windows CE.  There isn’t 

WebCam support integrated in DirectShow on Windows CE.  Instead you use a layered approach to 

construct the appropriate decoder: 

 A driver called WebCam.dll (http://cewebcam.codeplex.com/) to get each frame, 

 A modules that wraps the IOCTL’s used to retrieve the frames 

 A MJPEG decoder, based on a modified JPEG image decoder, that decodes each frame into a 3 

buffers: one for Y,  Cb and Cr.   The latter two are half the width of Y (each element represents 

two pixels) 

Table 8: Performance profile, characteristics / properties 

Property  Value 

Frame rate 30fps 
Frame encoding MJPEG 
Frame size 352x288 
Frame decode time 20ms1 
Analysis time 15ms (full), 3ms for unchanged frame 

                                                           
1
 full color decode is 25ms – initially was over 100ms; I expected a much faster decode time. 



11 
 

The smaller frames size(and rate) was chosen to allow decoding and processing to happen fast enough.  

The features that in the device that will have to be updated: 

Table 9: Camera sensor properties 

Code Name Default Desired 

2 Auto-Exposure Mode 8 0 
3 Auto-Exposure Priority 1 0 
4 Exposure Time (Abs) 166 1 
18 Brightness 128  
19 Contrast 32  
21 Saturation 32  
22 Sharpness 224  
24 White Balance Temp 4000  
26 Backlight Compensation 1  
27 Gain 0  
28 Power Line Frequency 2  
30 White Balance Temp-Auto 1 0 

Updates to the driver 

lstrcpy and lstrcat had to be updated to “more secure” versions. 

There were several spots where a return was missing, and a dodgy check for invalid parameters. 

Need to send a note to the author. 

Memory was made to reduce the usage. 

Check that the memory copies are not a problem for me. 

Potential bugs in the driver 

The device has some buffering quirks.  PddVclas.cpp, line 135 (pdd_DeviceAttach) 

 pPDD->strStreamDefault.dwNumBuffs = NUMDEFBUFFS; 

PddVclas.h line 70: 

#define NUMDEFBUFFS 2 

Okay,  WebCam.cpp line 757 (mdd_SetVideoFormat) 

 // Verify that we at least have three buffers 

 if (vsData.dwNumBuffs < 3) 

  vsData.dwNumBuffs = 3; 

Shouldn’t the default satisfy this constraint? 

pddVclas.cpp DoVendorTransfer does a memory copy.  This could be done better, but isn’t necessary 

since it isn’t used for the video frames. 

line 335 seems unnecessary 

Count # memcopies, count bytes per transform, count number of frames.  Then rate the change 



12 
 

Software Steps 
1. The program (and it’s constituent’s) only allocate memory at the start of allocation. 

2. A channel to the camera driver is opened, and the camera is configured for the property  

settings. 

3. The frame rates and sizes are examined to find one suitable for our processing capacity 

4. The video frame channel is opened with the selected image size. 

5. The software loops in a process 

a. get new frame 

b. decode the frame.   Most of the time is spent in the get_bits_2() procedure, rolling the 

bits around. 

c. Process the frame (described in the next section) 

This was prototyped on the PC and develop of the key algorithms were ported stepwise from a PC. 

Image processing steps 
Steps in image processing: 

1. Motion check – look for change in image.  This reduces the time per frame in the other portions, 

keeping the overall frame rate higher. 

2. Correct image brightness 

3. Temp (k) convert image with color correction 

4. Correct image orientation (warp / sheer) 

5. Clean image == remove too bright of spots 

6. Do background identification and removal  

7. Separate the image into blobs.  Algorithms: flood fill, 

8. Do derivatives.  Each object gets its own histogram if pixel A and pixel B 

9. Analyze histograms to find orientation and origin 

10. Finding edges (to distinguish between circle and rectangle) 

11. Finding corners, outlying points and estimated center of region 

12. Determine the shape 

13. Map objects to previous object (past) 

14. Report changes: item lost, item observed, moved, rotated 

15. Map to a “known” item. 

16. Map changes to action.  Things can be mapped to: move window, move mouse, button press, 

pause music, mouse click 

The buffer layout is special.  The stride of the internal buffers are a power of 2; the extra bytes (between 

the width and stride) are ignored.  References to a pixel are done with an index, rather than a pointer or 

x-y coordinate.    Instead of converting an index to coordinates with: 

y = Idx / Width; 
x= Idx – Idx*Width; 

we use: 



13 
 

y = Idx >> a; 
x =Idx & b; 

This allows a speed up of several ms per frame (about 7ms).   

Background Removal 

Optimization: could use a stored image – if one is known. 

Thresholding method.  This is done with a histogram of the image and removing anything that is brighter 

than 7% of the pixels.  This band is found by identifying  the histogram of background brightness and 

find the region that is either known to be interesting or known to be uninteresting. 

Finding Regions / Blobs 
A blob is linked list of pixels.  As scary as that sounds it really is faster for the rest of the analysis. 

Linear scan (left to right in each row, and top to bottom). 

1. If the pixel is a background, it is skipped 

2. If the pixel to the left wasn’t background, assign it’s region id to this pixel 

3. If the pixel above wasn’t background, assign it’s region id to this pixel 

a. If both had region id’s, and they are different, make a note that the two id’s are 

equivalent. 

4. If both were background, assign a new id to this pixel 

5. Count the number of pixels for each region 

After the scan is done, go thru each of the regions and merge all of the different-but-equivalent ids to 

use a single id.  Then throw out the regions that don’t have enough pixels. 

I also compact the regions id’s, since the size of other tables depends on this, and it can consume time 

to manage them. 

Finding the corners of item 
 The min and max Y of the regions pixels, no matter the X 

 The min and max X of the regions pixels, no matter the Y 

 Nominal Upper left: The point whose X and Y, such that there is no other point (P) whose P.X < X 

and P.Y < Y 

 Nominal Lower right: The point whose X and Y, such that there is no other point (P) whose P.X > 

X and P.Y > Y 

 Nominal Upper right: whose X and Y, such that there is no other point (P) whose P.X > X and P.Y 

< Y 

 Nominal Lower left : whose X and Y, such that there is no other point (P) whose P.X < X and P.Y > 

Y 

Nominal?  That is assuming an non-rotated rectangle.  Rotating makes the corners in different places.  

There is a check that it may have been rotated and then corrects for that. 



14 
 

Finding these points is a linear scan thru the whole image (!).  It isn’t perfect. 

Optimization; make the image width a power of two (big stride!) 

Optimization: make the region a chain of pointers 

5. Audio bits 
Uses DirectSound (part of DirectX?) to implement: 

 Playback 

 Audio loops 

 Audio effects 

Parameters: 

 Sample rate: the number of samples per second 

 Number of channels (usually 2) 

 Sample size: usually 16bits (2 bytes) 

These go together to determine the size (in bytes): 

                                                            

The preferred buffer size is a playback duration plus a read ahead.  The duration is a value in the range 

10ms to 100ms 

Buffer size (the amount to read ahead + 1 section) 

#sections = BufferSize / Sections size = L / Section Duration 

= 1 if perfect 

perfect is L < max length to be perfect (may be looping vs single shot) 

Event to skip ahead, skip back 

Sample Rate correction (matching file to output rate) 
May not be necessary.  Right now I just change the DirectSound settings at the start and end. 

Skip ahead 
Parameter how much to skip. 

1. Set DirectAudio speaker index ahead to skip over our read ahead buffer 

2. Set file index ahead 

3. Optional: do we fill in with a scratch sound?  Yes: it gives a natural response to the action, either 

a fixed scratch sound, or sampling. 



15 
 

Skip back 
Parameter how much to skip back 

1. Set DirectSound index ahead, to skip over remaining sound 

2. Set File Index back 

It isn’t clear how to make the response sound. 

Accelerated Playback 
The audio speed up  

is two factors: number samples on, number of samples skip.  The playback rate is 

               
      

  
 

To avoid shifting the frequency, we need a minimum number of on samples: SampleRate * 15ms or so.  

So 

                              

There is no slowing the music down below 1 

Playing backward – skip and do rate.  

Disk angle makes rate exponential 

6. Hardware profile 
  

Size 4”x6”x1” 
Power 5volts,  800mA operating + 500mA per USB.  A LDO regulator (eg MCP1827s) down 

regulates the batteries to a constant voltage, and provides clean shutdown when the 
voltage is too low. 

Audio  
Camera Logitech QuickCam 9000 
  
  
  

Characteristics of Camera 
Camera selection 

Latency How responsive the system is, or if it will feel sluggish 
Focal length How close the camera has to be to the desk.  Limits the size of the desk area. 
Aspect Ratio 4:3 
Exposure control Low-light and image correction.  If the camera doesn’t support it, you’ll have 

to work on the lighting by hand. 



16 
 

 

Lens, focal length, pixel count are important, but not as much.  Color response: Different sources will 

have narrower or wider cooler gamuts, color spaces, different illuminants, sensitivity, exposure time, etc.  

This makes for some trying to figure it out. 

Windows CE build configuration 
Debug: 

 IDE storage driver 

 Hive registry 

 R6040 Ethernet driver 

 Realtek-8100 Ethernet 

 Compact flash 

 1st serial port 

 SPI flash controller 

 USB 2.0 controller driver 

 USB audio device 

 USB mass storage 

 Headless 

 256MB Ram 

 CAB File Installer/Uninstaller 

 .NET Compact Framework 3.5 

 CoreCon 

 AutoLaunch 

 RegFlushApp 

 IMGEBOOT 

 KITL (no IMGNOKITL) 

all else off 

The release version has less 

other 
Faster boot; config.sys autoexec.bat setting 

how to remove map and pdb files from release build 

windows setting 

service packs, installation order, how to install on 7, virtual machine. 

parts 
Camera Device 



17 
 

Reference frame 

Reference dFrame 

Background (est) – image of background (estimated).  This is built up over time  

mask – indication of whether pixel is known or unknown 

Camera Correction 
Stabilization.  Not implemented 

Handling the shape of the desk as seen in the camera.  Calibration / de-warping 

Option is to either dewarp the whole image, and process that… or accept the distortion and apply the 

change to the few key points later.  Currently a preference for that. 

No color correction yet 

Orientation.  Correct skew/angle based on calibration (possibly pre-correct image).  Use simple 

background (flat color, no texture, wood).  Employ key points on display (desk) to recalibrate screen.  

Check ensemble of visual objects to see if there is a consistent movement between dp, theta, using that 

to recalibrate 

Color and detail.  Use remaping of RGB to correct range (formula/lookup).  HDR algorithm.  Cycle 

exposure with HDR to increase dynamic range.  Oversampling window. 

Size can only be increased 

Angle can be updated.  First match by rotation 45deg (pi/4) then if delta > threshold 

We don’t need scaling, perspective effect, shear, or different thetaxy angles 

Optimization.  use an image difference to figure out which areas have changed (and scan only those) 

Resolution boost.  For items, zoom in on corners and analyze for finer resolution 

Convert trichromate to scalar (e.g. color temperature) 

Estimating camera / desk orientation 

 look at each shape’s corners in original.  Use size, orientation + M to map to ideal 

 Use a subset of these points to calculate new M0.  This will create interesting artificial frequency 

injection into system, so will need a filter. 

Matching color 
Graph of the visualization 

Diagram of the memory format. 



18 
 

Flow of mapping pixels to a thing and the semantics 

Each mapping involves one or more steps. 

What we can update (after mapping to items() 

Position can be set (if delta > threshold) 

7. Implementation 
Parameters aren’t specific to source (too much). They try to be in the units and range of one of the 

buffer representations.  Some work to get source to buffer in a consistent fashion.  Conversion 

parameters. 

The different sources will have narrower or wider color gamut (With respect to each other), different 

illuminants, sensitivity, exposure time, etc.  This makes for some fun in try to figure it out. 

Configure similarity thresholds 

Relevant algorithms 

Kinds of objects in the ensemble.  Audio source.  Audio sink.  Something that knows how to handle 

knobs/sliders. 

Example of a slider controlling volume. 

Example of mouse. 

Processing Steps 
1. Get image frame from video stream 

2. Process the image, analyze into changes in controls 

3. Update state of controls and take action 

4. Queue new work 

Image / frame stabilization 
Not implemented yet 

1. Do HP edge filter 

2. Select key points to find offsets with respect to reference frame (convolution) 

3. Compute Mframe for shaking (represented as transform) 

4. Multiple M0 (the transform to flat rep coefs) 

5. Use these to build flat, stabilized image 

Parts 



19 
 

What kinds of sliders, button, point.  Sliders come in any number of variations – button in box, knob like 

item.  Circle or stroke in knob .  Those can be circle or rectangle.  Pointers are better as circle (I believe it 

is more intuitive to tell where the center is) 

Configuring what the controls do, go the panel, select configure controls.  Grid of controls and what they 

do.  Find the control you are inherited in and then change the action it is associated with.  Then close 

the window and move on. 

Non-affine transform 

Grabbing an image of an item 

Scanning for a QR code 
QR could mean sound url, sound label, NPC characteristics 

Persons VCard 

 


