TECHNICA AL REFERENTCE M ANUAL

Anki Vector

A LOVE LETTER TO THE

LITTLE DUDE

AUTHOR RANDALL MAAS

OVERVIEW This book explores how the Anki Vector was realized in hardware and software.

e —
-
\“-..._._._..-— E
e —
Copyright © 2019-2021 Randall Maas.
| ———

All rights reserved.

drawing by Steph Dere

RANDALL MAAs has spent decades in Washington and Minnesota. He consults in embedded
systems development, especially medical devices. Before that he did a lot of other things...
like everyone else in the software industry. He is also interested in geophysical models,
formal semantics, model theory and compilers.

You can contact him at randym@randym.name.

LinkedIn: http://www:.linkedin.com/pub/randall-maas/9/838/8b1

ANKI VECTOR

- 2021.02.14

Table of Contents

ANKIVECTOR....cccueteueereunaerunnerunnerenserensssensessasssrassssnssessnssssnsessnssssnssssnssessnssssnsessnsassnssssnsssnan |
A LOVE LETTER TO THE LITTLE DUDE......c.ccccctueieiuuccieanerensereasereasssrnsscsassesensesensassnssssnsssensssnen |
PREFACEccccituiiiuaieieaereanieeneseranserenserensassnssssnssesassensnsssenssessnssssnssesnssessnsssanssassnssssnssssnasasanse 1
1. ORGANIZATION OF THIS DOCUMENT ..eeeuerennrenseeenserenserensensasessnsessnssessssessnsessnssssnsssanssenen 1
1.1. ORDER OF DEVELOPMENT ...utteeueresecrenserensesensessnssessssessnsensnsessnsessnssesssssssnsessnssssnsssanssenen 3
1.2. VERSION(S) ceeeeeeremnnnseeissrnnernnnnssssssssnsesnnnsssssssssssesnnnsssssssssssssnnssssssssssssssnnnsssssssssssssnnnns 4
1.3. CUSTOMIZATION AND PATCHING .ceeuerennerensrensecenserenserensensnsessnsessnssessnsessnsessnsassnsssansssnen 4
1.4. CODE NAMES OR VECTOR VS VICTOR ..ccuerennnrennerennnerenserenserensessnsessnssessnsessnsessnssssnsssnsssnen 4
CHAPTER 1......cciiiueiiinenciennsiennsienssisasssrnsssrsnssrsnsssonssssnssssnssssnsssssnsssansssanssssnssssnassssnssssnsssansass 6
OVERVIEW OF VECTOR.....cccieuuiituuaiiunisinnerenssrenssronssssnssssnssssssssssnssssnssssnssssnssssnsssssnssssnsssansass 6
2. OVERVIEW ...ieeuiiennerensirensssrnsssnssssssssssssssssnssssnssssssssssnssssnssssnssssnssssssssssnssssnssssnsssanssssen 6
2.1, COMPELLING CHARACTER ..uutteeeiienscieescrsnsisenssssnsssssnsssssssssnssssnssssnsssssssssssssssnssssnssssnssssen 6
2.2. FEATURES ..ceuutieeniienncrensensnnisrnesssnsssrenssrenssssnsssssssssssssssnssssnssssnsssssnsssenssssnssssnssssnnsssnnse 7
3 PRIVACY AND SECURITY .ecuuiieniinencrenscrenssrenssssnsssrsssssssssssnssssnssssnsssssnssssnssssnssssnssssnnsssnnne 9
4 600741 o 1N 9
5 ALEXA INTEGRATION ceuuuiennrenserensissnssssnsssssssssssssssssssenssssnssssnssssssssssnssssnssssnssssnssssnnsssnn 10
PART l.uuiieeiiineiiinnsinnneienserensssennsssnsssrsnssrensossnssssnssssnsssssnssssnssssnssssnssssnsssssnssssnssssnssssnssssnassann 11
ELECTRONICS DESIGN.......ccceeitrueneeiirunasiernnssseennsssesennsssssennssssssnsssssssnssnssssnsssssssnsssssssnsssssenns 11
CHAPTER 2......ccciiiuuiiinunirensiennsiensrensssiasssrasssionssresssseasssrssssrasssrssssrosssssasssrsssssasssrassssanssssnss 13
ELECTRONICS DESIGN DESCRIPTIONcccuueeiiemueeerennnneeeennnnseeennsnsseennsseeennsssesnssnssssnssnseenns 13
6. DESIGN OVERVIEW ..ccuuuiirneneciernnsserennsssssennssssssnssssssensssssssnssssssensssssssnsssssssnsssssssnssssssnns 13
6.1. POWER SOURCE AND DISTRIBUTION TREE..ccuuutttrussersennssersennsnsrsennssesssnsssssssnsssssssnssssssnns 16
6.2. MANUFACTURING TEST SUPPORT ...cevuuueriennsncssennsnessenssssssenssssssensssssssnsssssssnnssssssnssssssnns 17
7. REFERENCES & RESOURCESitueeireessrenssienssressssrnsseresssrsssssenssssssssrssssrsssssssssssnssssnsssnas 17
CHAPTER 3.....ccuciiieeiinunerensienssienssrensssruessranssrosssresssreasssenssssasssrssssressssssssssssssssssssassssanssssnss 18
HEAD-BOARD ELECTRONICS DESIGN DESCRIPTION......cccceeueeteascenseseannerencsrensersassssnsssensssen 18
8. THE HEAD-BOARD (THE IMAIN PROCESSOR BOARD) .ccuuueiteeneeereenneeceeeaneeseennseeseennssessennnnenns 18
8.1. THE APQ8009 PROCESSOR .ccucreunirennerennsrnnsereesersnsssenssssnsssssssssssssssnssssnssssnssssnssssnsssses 19
8.2. SPEAKER .eeuutirenerenserensirenssssnsssrnssssssssssnssssnssssnssssnssssssssssnsssenssssnssssssssssnssssnsssensesannans 19
8.3. CAMERA ..cuuiiieiiieeniienniienesstessrnssssssssssnsssenssssnssssnssssesssssnsssenssssnssssssssssnssssnsssensesansans 20
8.4. 15 131 T 0 RN 20
8.5. POWER MANAGEMENT ..ccuciteuiitneierenerenscrensessassssnssssssssssnsssensessnssssssssssssessnssssnsessnsssnen 20
8.6. TRIM, CALIBRATION SERIAL NUMBERS AND KEYS ..c.ieeuiiiniiiinniiieniiieeerenirennerenssernnsesnsnenes 20
8.7. MANUFACTURING TEST CONNECTOR/INTERFACE «.eeevevetererererereeerereeeseresesessssssssssssssssssssnes 21
9. REFERENCES & RESOURCESieeuiieeirenniienserensisrnsiesensersnsesensessnssssssssssnsessnssssnsessnsssnen 21
CHAPTER 4......cciiiimuiiiiniiieaieienneieaereasssensssenssssensesensessasassnssssnsssssnsssensassnssssnssassnssssnnsssansasnnse 22
BACKPACK & BODY-BOARD ELECTRONICS DESIGN DESCRIPTION.....cccccieuuiieanereancennnsennnenes 22
10. THE BACKPACK BOARD ...ccuuiieeiiinniiinesiiessinnsiieessrensiresssssssssrssssresssrssssrsnsssssssssnssssnssssas 22

ANKI VECTOR - 2021.02.14 jiii

10.1. BACKPACK CONNECTION «.ceuureeiresseesseestonsrossrasssnssssssssssssersssrssssesssessasssasssasssnsssnssssssases 23

10.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTION ..ccuuuueirrreeennnnnsssessneneennsnssssesssssesnnnnsnsnes 23
10.3. OPERATION ceeuuuueiiirireeennnnssssessssesssnssssssssssssssnnssssssssssssssnnssssssssssssssnnssssssssssssssnnnnsssnes 23
11. THE BODY-BOARD ...ccuucitemnneiiennneeriennneereenseseeensseseesnssessesnssessssnssessssnssesssnnssesssnnnnanes 25
11.1. POWER MANAGEMENT...ccuuetttennneerernsneerennsseesenssseessnsssesssnsssesssnsssssesnsssssssnssssssnnssssssnns 26
11.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTIONcceeeueeereemnnneeeennnncreennnsseennssssssnnsassenns 29
11.3. STM32F030 MICROCONTROLLER...cceuuuerrenusserrenssnessennsssssennsssssennsssssensssssssnssssnssnnssssenns 29
L11.4. SENSING ..ceeeeuueerrrnnneerernssessernssessennsssssennsssseenssssssenssssseenssssssensssssssnsssssesnssssnennnsssenns 31
3 T © 11 1 11U 1 N 33
11.6. COMMUNICATION.....uereruneeerernnsesrernssssrenssssssenssssssenssssssensssssssnsssssesnsssssesnssssnennnsssenns 34
11.7. COMMUNICATION WITH THE HEAD-BOARDcceeeueuerrennnncreennsnessennsssseennssssesnnsssssnnnsssenns 34
12. REFERENCES & RESOURCESiiuuuiineniiensiiennsrensisrnsssrssssssnssssnssssnsssssssssssssssnssssnssssnssssns 35
CHAPTER 5....ccuiiiiineeiinnnesieneseeeennsaseeensseseensssseeensssseesnsssssesnsssssnnnssssssnnsssssenassssnsnansssnannnas 37
ACCESSORY ELECTRONICS DESIGN DESCRIPTION........ccccuceiiemensirenanaeeenansaeenassseennnsanennnns 37
13. CHARGING STATION ..ceeuuuirrennneerrennsesrennsaeseenssesseenssssssensssssssnssssssenssssssenssssssennsssssennnns 37
14. HABITAT (VECTOR SPACE) «uuueveenneerrennneereennsnersensssessensseessnssssessnsssesssnsssssssnsssssssnssssssnns 38
15. CUBE .uuitieeeeiiiennsciiennsseiiensssssmsnsssssssnsssssssnsssssssnsssssssnsssssssnsssssssnsssssssnnssssssnssssssannsns 38
15.1. OVER THE AIR APPLICATION FIRMWARE DOWNLOADcceeeveermennsecessrereennnnssssessnaresnnnnssenes 39
15.2. REFERENCES & RESOURCEScccuueiierueneeiennssersennsssssennsssssenssssssensssssssnsssssssnsssssssnssssssnns 39
PART Il ieueeiiiineeeiinnnnesiernnasiesnssasiesassossennssssrennsssssennsssssennssssssnsssssssnsssssesnsssssssnsssssssnnsssssnns 41
BASIC OPERATIONccccvueueeiiennnaeieennssiennssssiennsssesennsssssennssssssnsssssesnsssssssnsssssssnsssssssnsssssanns 41
CHAPTER B...cuuuuiiieneneeiirnnseiinnnssssennsissiensssersenssssssensssssssnsssssssnsssssssnsssssssnssssssnsssssssnssssssannsns 43
ARCHITECTUREcciiveeeiiiiennesiiennnasiiennsasirennsssiionssssssonsssssronssssssonsssssssnsssssrsnsssssssnnssssssnnsas 43
16. OVERVIEW OF VECTOR’S COMMUNICATION INFRASTRUCTURE.....ceeerurienessssrennssssenssssssennnns 43
16.1. APPLICATION SERVICES ARCHITECTURE ...cceeuesueeeennsscssennsnessensssssssnsssssssnsssssssnsssssssnssssssnns 44
16.2. EMOTION MODEL, BEHAVIOUR ENGINE, ACTIONS AND ANIMATION ENGINE ...ccceeueereennnenenns 46
17. STORAGE SYSTEM ...eeeeuuireennneereennnaeseennseeseenssesseenssssssensssssssnssssssensssssssnsssssssnnsssssennnns 47
17.1. ELECTRONIC MEDICAL RECORD (EMR).....ceeuueiiiiienirieinncerrennneeseennneeseennseseennseseennsnsnenns 47
17.2. OEM PARTITION FOR OWNER CERTIFICATES AND LOGS ..ceuuereennneereennsncseennseseennsssseennsassenns 49
18. SECURITY AND PRIVACY ...uieeceueereennnesrennseeseenssesssensssssensssssssnsssssssnsssssssnsssssssnnsssssennnns 49
18.1. ENCRYPTED COMMUNICATIONucererunuerrennnnersensnsessennsseseensssesssnsssssssnsssssesnsssssssnnsssenns 50
18.2. ENCRYPTED FILESYSTEM .ceeuuuereensseerernsseerennsseesensssessensssessensssssssnsssssesnsssssesnssnssennssnssenns 50
18.3. THE OPERATING SYSTEMceeeuuueerernnneerennnneesennssessennssessensssssssnsssssssnsssssesnsssssssnssnssenns 50
18.4. AUTHENTICATION .ccuuuirernnneereensnesserasseerennssessensssessenssseseensssasssnsssssesnsssssesnsssssesnnsassenns 51
19. CONFIGURATION AND ASSET FILES.ccuuutttemeneereennseeseenssesssenssesssenssssssensssssssnnssssssnnsssssennnns 51
19.1. CONFIGURATION FILES...ceuuueererussaerernsssesennsssssensssssssnsssssssnsssssssnsssssssnsssssssnsssssssnssssssnns 51
20. SOFTWARE-HARDWARE LAYERS ...cccuuiiiemeniiiiemeniirienensssrensssssrenssssssensssssssnssssesenssssssennnns 52
20.1. THE BODY BOARD INPUT/OUTPUTuuuuuuerernrsrsssnsnnes 52
20.2. THE LCD DISPLAY.....cttrueueeremnnncerenassesrenssssssensssssssnsssssssnsssssssnssssssnnssssssnsssssssnnssssssnnnns 52
20.3. THE CAMERA. .. cttuuueererenneerennsnesrenasssseenssssssensssssesnsssssesnssssssnnsssssennsssssensssssssnnssssnennnns 53
21. REFERENCES & RESOURCESivuuuiieesiranssienssrsnsssrnsssrssssrsnsssensssssssssssssssssssssssssnssssnsssnas 53
CHAPTER 7....cuuiiiiueeeiinnneeeienaneseenasasseenasaeeeensssseeensssseesnsssseennsssssennsssssennssssssnasssssenassssnananns 55
STARTUP ...cceuuiiiimeneeiienenaeiienensieenesasreenesaseeenassseensssseronsssssronsssssronasssssonassssransssssronasssssannnas 55

ANKI VECTOR - 2021.02.14 iv

22, STARTUP. .cuuiiiutiieetitrusiirnetrasssraessraessrsnsstessssrasssrasssrasssrsssstenssssnsssrsssssasssrsnsssenssssnnnss 55

22.1. QUALCOMM'’S PRIMARY AND SECONDARY BOOT-LOADER ...cceeuuesseecersreesnnnnssssssssnneesnnnnsnnnes 55
22.2. ANDROID BOOT-LOADER (ABOOT) ..cuuuuieiiiinerrmnnnsseisneneesnnnsssssssssnsessnnssssssssssssssnnnnsnsnes 56
22.3. RECOVERY BOOT ..iiiieeeeiiiiiiiiiinenennniiessieieennsnssssssssneesnnnsssssssssnsssnnnssssssssssssssnnnssnsnes 57
22.4. REGULAR SYSTEM BOOT.cuuuuuiiiriireennnssssssssssssennsssssssssssssssnnnsssssssssssssnnnssssssssssssssnnnssnsnns 57
22.5. ABNORMAL SYSTEM BOOT...uetitreeensssssssssssnrnesssssssssssssssesssssssssssssssesssssssssssssssssssssssssses 60
22.6. REGULAR REBOOTS ..ceevuuusesiserinnnenssnsssssssnmmnesssssssssssssnsesssssssssssssnsesssssssssssssssssssnsssssses 60
23. REFERENCES & RESOURCESivuuuiieeniiensiienssrensisrnssssssssssnssssnssssnsssssssssssssssnssssnssssnsssans 60
CHAPTER 8....ciiiereuuueisineiinenennnnsssssisirreesssssssssssesrsesssssssssssssrsesssssssssssssssesssssssssssssssssssssssssses 61
POWER MANAGEMENT.....ccceetummssisiririrersnnsssssrirrsesssssssssssesrsesssssssssssssssesssssssssssssesssssssssses 61
24, POWER MANAGEMENT ..cetvetsuesssssesnnenenssssssssssssesesssssssssssssssesssssssssssssssessssssssssssssssssnnes 61
24.1. BATTERY MANAGEMENT seuuuuieriiirerssssssssssssnnerssssssssssssssesssssssssssssssesssssssssssssssssssnssssssss 61
24.2. RESPONSES, SHEDDING LOAD / POWER SAVING EFFORTS ..cvveeeerreesesssnnneeeesssssesssnnnneesessasnes 62
24.3. SLEEP STATES tuuuceerreeresssssssssssssssesssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssnnnsssssss 64
24.4. ACTIVITY LEVEL MANAGEMENT ..cieeveesssssessinenesssnsssssssssnsesssssssssssssssessssssssssssssssssnsassssses 65
24.5. SHUTDOWN ...uutiitiirerennessssisessmmrmsasssssssssimmmesssssssssssssmmesssssssssssssseessssssssssssssnssssnsssssass 65
24.6. THE CUBE POWER IMANAGEMENT ..cuuuiiiennsereennssersenssssnsensssssssnsssssssnsssssssnssssssnnssssssnnsns 66
25. CHARGING .euuuiieirreranusssssisssmmerssssssssissimmesasssssssssssmmesssssssssssssssessssssssssssssnesnsssssssssssnes 66
CHAPTER 9...iiiiiieuueunnniniiinenenunssnnisiiiieennnnssssisiiiieeesanssssssisiireessnssssssissieressnssssssssssenesssnnssssnns 67
BASIC INPUTS AND OUTPUTScceieueeeeiernnnserennssserennsssesennssssssnsssssssnsssssssnsssssssnsssssssnssssssnns 67
26. BUTTON, TOUCH AND CLIFF SENSOR INPUTciitmueieriemnnieniennsiessennsssrssnsssssssnsssssssnssssssens 67
26.1. TOUCH SENSING INFORMATION ...cceeuruerrennsersennsssssnssssnssnsssssssnsssssssnssssssnnssssssnnssssssnnsns 68
26.2. TIME OF FLIGHT PROXIMITY SENSOR....ccccuusettennsiersensssonsensssssssnssssssnnssssssnnssssssnnssssssnnsns 68
27. BACKPACK LIGHTS CONTROL «.cveuuueriennssessennsssssenssssssensssssssnsssssssnsssssssnsssssssnsssssssnssssssnns 68
CHAPTER 10...000ceeuuunnnniniiinerennnnsnisiiirerenssnssssssireeessnssssssissirressnssssssisesiresssssssssssssnsesssnsssssnns 70
INERTIAL MOTION SENSINGcieuiiuniianceuniensiansisssianssansenssessiosssasssasssssssssssssrssssssssasssnsssnssans 70
28. IMIOTION SENSING ..uuuierinerennsnsssssssnnesensssnnns 70
28.1. ACCELEROMETER AND GYROSCOPE...cuusssesrireeersnsssassssnassssnss 70
28.2. TILTED HEAD ..uuciiiiiireennnniiiiiiiinensssssissniinsesssssssssssssssessssssssssssssssssssssssssssssssssnnnnssssss 71
28.3. SENSING IMOTION ..cetreeunnsessserineeenssssssssssssssssssssssssssssssesssssssssssssssessssssssssssssssssnnnsssssss 71
28.4. SENSING INTERACTIONS ..uuuuuserirreerssessnsssssssssssssssnnnsssssss 71
29. REFERENCES AND RESOURCES ..uuuueiiiteeenssssssssssnssssnsssssssssssssssssssssssssssssssssnsssssssssssssssnnes 72
PART Ill.euieuienianiansansenransanrossansansassossassossassossassossassossastassassassassossassassassassassassassassassassassassas 73
COMMUNICATION .uuiuuiruniensiansrsssiasseansensrsssrasssasssssssssssssssssssssssssssssssssosssasssasssssssnsssnssssssanss 73
CHAPTER 11 .. .iuuiiuuiiuiinniensiansinnsiunseossonsiossiassssssssscsssssssssssssssssssssssssssosssasssasssnsssnsssnssanssnnss 75
COMMUNICATION ...uuuiieiireremnnnssnssssiriensssnssssssssrrsesssssssssssssrresssssssssssssrsesssssssssssssssesssssssssans 75
30. OVERVIEW OF VECTOR’S COMMUNICATION INFRASTRUCTURE ... cserirersnssssssssssnnesssssssssssssnns 75
31. INTERNAL COMMUNICATION WITH PERIPHERALS .cccuutsesieesirerensssssssssssnrsnsssssssssssssssssssssssses 76
31.1. COMMUNICATION WITH THE BODY-BOARDcccvuuueesssiserrnernnsessssssssnnesnssssssssssssnssnsssssssses 76
31.2. SERIALBOOT CONSOLE ceuuuuesrerirrrerssnssssssssseressssssssssssssnesssssssssssssssssssssssssssssssssssnnsssssss 76
3 00 U 1 - P 76
32. BLUETOOTH LE......ciiiiiiiieinneniniiiiiiinenneissiiiiiiinesssssssssssimnesssssssssssssnsessssssssssssssssssnnes 76

ANKI VECTOR - 2021.02.14

33. WL ceeiiiiieiiiiecieenereaneieneeerasssrnssereesenensesensessassesnssssnssesensssensessnssssnsssssnsensnsssensanannans 78
33.1. FIREWALL..ecuuiieeeirennerennerenserenssenseesnssersnsesensessassssnssssnsssssnsessnsessnssssnsssenssssnnsesnnsenanse 79
33.2. WIFI CONFIGURATION....uuteuuerrmnnrennncrenserenserensersasessnsessnsssssssessnsensnsessnsesanssssnnsesnnsenanse 79
33.3. ACCESS POINT IVIODEceeueieenniinencrenncrennerennersasessnsessnssersssessnsessnsessnsessnssssnnsesnnsensnse 80
34. NETWORK COMMUNICATION .. euueremnnerenncrensersasassnsessnssessnsssensessnssesssssssnsessnssssnsessnsssnen 80
34.1. COMMUNICATING WITH MOBILE APP AND SDK......cceeuuiirreneiireeenierenencerenenesnenanessnenenes 80
34.2. WEB-VIZ, A VISUAL CHARACTERIZATION TOOL..ccuuueeeennsnereennsssseenssssrennsssssennsssssennsssssennnes 82
35. CLOUD SERVERS.cuuuurteeesesreennsessrensssssenssssseensssssmenssssssenssssssenssssssensssssnenssssssenssssssennnns 83
35.1. ROBOT CERTIFICATE ..eevuuuereennsneseerassessensssseensssssssnsssssesnsssssesnsssssennsssssennssssnennnssssennnns 84
36. REFERENCES & RESOURCESiivuuiieeniiensiiennsrensisrnssssssssssnssssnssssnsssssssssssssssnssssnssssnssssns 84
CHAPTER 12......cccceuueiiiiuneeiennneerennsasseenaseseensssseeensssseesnssssnesnssssssnnssssssnnssssssnassssnsnassssnannnns 85
BODY-BOARD COMMUNICATION PROTOCOL.....cccccuuzueeeennnnereennnnaseennsnseeennsssseennssseennnssseenns 85
37. COMMUNICATION PROTOCOL OVERVIEW.......ceeeeeeerrennnessrennnnssrenssesssensssssnenssssssenssssssennnns 85
37.1. BASIC STRUCTURES...cecvuuueeeennnneerenassessensssssesnsssssssnsssssesnsssssssnssssssnnsssssennssssssnnnssssennnns 86
37.2. THE IMESSAGE FRAMESccceuueererunereennnseenennsseseenssssseensssssesnsssssesnsssssennsssssennnssssennnns 86
37.3. ACKNOWLEDGEMENT AND NEGATIVE ACKNOWLEDGEMENT OF IMIESSAGEScceeeeerennerennerenns 87
37.4. UPDATING THE FIRMWARE APPLICATION ...ccuucttemusereennssonsenssssnssnssssssnnssssssnnssssssnnssssssnnses 87
37.5. COMMAND-LINE INTERFACE ..cccuuertenunernennssensennssesssnssssssensssssssnsssssssnssssssnsssssssnnssssssnnsns 88
38. IMIESSAGE FORMATSiieueeeiirnnsseiesnsssssennsssssenssssssensssssssnssssssensssssssnsssssssnsssssssnssssssnns 89
38.1. ENUMERATIONS .eeuuiiirunneerennnsessenasssssensssssssnsssssssnsssssssnsssssssnssssssnnssssssnnssssssnnssssssnnsss 20
38.2. STRUCTURES...cittuuueeitrnnsserennsssssersssessensssssssnsssssssnsssssssnsssssssnssssssnnssssssnnssssssnnsssssannsss 91
38.3. DATA FRAME FROM BODY BOARD ...ccuucttemnsncrsenssersensssonsensssssssnsssssssnsssssssnssssssnnssssssnnses 91
38.4. DATA FRAME FROM HEAD BOARD TO BODY BOARDcctteueniirnennnisnmnnssisnennssssennsssssennnns 93
CHAPTER 13......ciieueeiiiinneeiinneeeiennsiseiennsiersenssssseensssssssnsssssssnsssssssnssssssnnssssssnnssssssnnsssssannsas 94
VECTOR BLUETOOTH LE COMMUNICATION PROTOCOL......cccuueiiiemensrrenannssrenesaserenanseeennnns 94
39. COMMUNICATION PROTOCOL OVERVIEW.......ceeeeeeereennneeseennnsssenssesssenssssssenssssssennsssssennnns 94
39.1. SETTING UP THE COMMUNICATION CHANNEL ...ceeuuuereennnaereennsaereenssassennssassennsssssennnsssssnnnes 96
39.2. FRAGMENTATION AND REASSEMBLYceeeeuuueeeennnereenssaeseensssssennssssssnnssassennssasssnnnsssssnnnes 97
39.3. ENCRYPTION SUPPORT ..cuuceeerunnereennnnessennsnessensssssesnssssesnsssssssnssssssnnssssssnnssssssnnnsssssnnnns 98
39.4. THERTSLAYER .ceuuuceierunneerennneesennnessensssseensssssesnsssssesnssssssnnssssssnnsssssennssnsssnnnsssssnnnns 99
39.5. FETCHING ALOG ceeuuuerernnueereennneeserassessennssessennsssssensssessenssssssensssssssnsssssesnsssssesnnsssenns 100
39.6. A BLE SHELL CONNECTION ...ccuuueererunneeeennsneeeennsseseensssessensssessensssssssnsssssssnsssssesnssnsenns 101
40. IMIESSAGE FORMATS ... ceeueeeereennseereensseeseenssessesnssessesnsssssesnssassesnssessennssenssnnssesssnnnnanes 102
40.1. APPLICATION CONNECTION ID...ceeuuuereennneeeennnaereenssaereenssasseensssesesnssasssnnssssssnnsssssennnes 103
40.2. BLE SHELL CONNECT.cccuueetteuseeerenannessennssessensssssennsssssssnssssssnnsssssenssssssennssssssnnsssssennnns 104
40.3. BLE SHELL DISCONNECT ...cceuuueererunersennssessensssesssnsssssssnsssssssnsssssssnssssssnsssssssnsssssssnnnns 104
40.4. BLE SHELLTO CLIENT ceuuuuittmusuerrenassersennssessensssssssnsssssssnsssssssnssssssnsssssssnnssssssnsssssssnnses 104
40.5. BLE SHELL TO SERVER ...uucttrueneererasncsrenssesrensssssesnsssssssnsssssssnsssssennsssssenssssssennsssssennnns 105
40.6. CANCELPAIRINGceereeneerennsneerensssessenssssssensssssssnsssssssnsssssssnssssssnssssssennsssssennsssssennnns 106
A0.7. CHALLENGE ...cevuuueirernnneerennsesrensssersenssssssensssssesnsssssssnssssssnnsssssenssssssennsssssenasssssennnns 107
40.8. CHALLENGE SUCCESS cevuvueerenusnesrenassessensssssssnsssssssnsssssssnsssssssnssssssnssssssensssssssnssssssennnns 108
40.9. CLOUD SESSIONucrerueneerennssesrenssessensssssssnsssssssnsssssssnsssssssnssssssnssssssensssssssnnsssssennnns 109
A0.10. CONNECT ceuuuirernnneerernssesrenmssesrenssssssensssssssnsssssssnsssssssnssssssnnsssssennsssssennsssssennsssssennnns 110
A0.11. DISCONNECT ..ceeuuueerernsseerenmssesrensssersensssssssnsssssssnsssssssnssssssnnssssssnsssssssnnsssssennssssssnnnns 111
40.12. FILE DOWNLOADcceuuueirimnnncerenanerrenessereensssssesnsssssssnsssssssnsssssenssssssenssssssenssssssennnns 112
2 Lo 25 e T Ko T c PRSP 113

ANKI VECTOR - 2021.02.14

vi

B0.14. NONCE...cuuieittruneittrnnerttnnsiirttsusiettesssiettesssietessssiettssssistessssistessssistesssssstesssssssennsss 114
40.15. OTA UPDATE...ccuuiittruunirrinnnirmenusiertenssieriesssisremsssiertesssistessssismessssismesssssssenssssssennnss 115
40.16. RESPONSEctuuuiiiusirenssrrasisrnessrasssrssssresssssasssrsssssasssssssssesssssasssssssssasssssasssssssssasssses 116
40.17. SDK PROXY..iiteuueirerunerrennnsesrenuniermenssientesssismessssiemmesssssmessssssmessssssmesssssssenssssssennsss 117
40.18. SSH...ceeuuiiiiiiiiiiiiiiiiiiinitiiieeiie et e e e ssaas s e s s s e e e s s s s s s s e s s s s e e s s nns st s aseeeaes 118
40.19. STATUS tieeuuerirrnnerrennnentennsirernssierersssissersssistensssissessssissessssestesssssssesssssssenssssssennses 119
40.20. VERSIONS LIST teuuuireernnnirrennnireennsierimnnsisnernssisnensssienessssissesssssstesssssssesssssssenssssssennses 120
40.21. WIFI ACCESS POINT..ccuuuiitimnnirirnnniirtennsiinennnsiinennssieneesssissessssistessssessesssssssenssssssennnes 121
40.22. WIFI CONNECT teuuureernssertennsscseenassessessssssersssessesssssssesssssssesssssssesssssssenssssssenssssssennnes 122
40.23. WIFI FORGET tieruuurtennnsertennsseseenasserennsssesensssessenssssssesssssssesssssssesssssssenssssssenssssssenases 123
40.24. WIFIIP ADDRESS ...vterusserrennssereenassereennsienenssssssenssssssesssssssesssssssesssssssesssssssenssssssennses 124
40.25. WIFISCAN ..vtirnnnirttnnnintennsiirttnasierernssietersssistessssieressssistessssestesssssssesssssssesssssssennses 125
CHAPTER 14.....cc000uuuiiiinunniiiinnnneiiennnneneennssrernnssseennsssseesnssssersssssserssssssesnssssserssssssesssssssenes 126
CUBE BLUETOOTH LE COMMUNICATION PROTOCOL...cccucceteeeusncrernnnnsrernnnsiernnssnennnsasnenes 126
41. CUBE COMMUNICATION PROTOCOL OVERVIEWccuuireenireensrensrenssrsassensssensssrsnssmensenenes 126
41.1. SENDING THE FIRMWARE APPLICATIONteuutteeeereneisensieeanserenssreesersnsissssssessssrssssrsnsensnse 126
41.2. RETRIEVING AND STREAMING ACCELEROMETER DATA ...cceuuiieunirennerennisennsreeserensersasenennans 127
42, CHARACTERISTIC IMESSAGE FORMATS .ccucteuuiiennerennirenniereeerssssreesersnsissssssessssrssssrsnsensnse 128
42.1. STRUCTURES .ceuutteeuitensireneirrasistnesetseersssersssereasistssssrssserssssrssserssssssssssessssrssssssnsensnse 128
42.2. LED CONTROL..ccuuirremunniriennsnirnennserennssisnennssissensssisnessssissensssissenssssssenssssssenssssssensses 128
42.3. APPLICATION VERSION ..ceuuuitnunirennerensireneierenisrenersesersasisessistssserssssrsssessnssssssssssssensnse 129
42.4. BATTERY AND ACCELEROMETER CHARACTERISTIC....ccuuuieeeucrenserenserennisennisenncrenserensenennans 129
42.5. OTA DOWNLOAD....cceuusertenussersenassersensssssesssssssenssssssesssssssesssssssenssssssenssssssenssssssenssss 129
42.6. REFERENCES & RESOURCESceuuuuiiiruesiimrnnsssiesnnsssimsnssssimsnsssssesnsssssmsnssssnesnsssssesnssssns 129
CHAPTER 15.....c00iiuuuiiiinunniniinnnniiiennsnsiiinnsnsneinnssssiennsssseennssssesnssssseenssssseensssssennssssnennsssssenns 130
THE HTTPS BASED APlccccciiiienniiiiinnnniiiinnniiieennniiiiennsaiieenessiseesssiiseensssiseensssssesnssssseennses 130
43. OVERVIEW OF THE SDK HTTPS APl......ceeiiieiiieiircreire s e sea e 130
43.1. SDK IMIESSAGE GROUPINGS...ccuuttuuuireessrenssrensisrasisrssiraessrssssmesssmsasssssssssasssssnsssensessnns 130
44. COMMON ELEIMIENTS ..c.uiieuiieeiiiieireeineasiiensirsassrnesiraessrssssienssssasssnssssasssssnsssensssenns 132
44.1. ENUMERATIONS .ecuituuieeiieeireeereirnieesisesioeirseisassessssnssssssssssssersserssssssssesssessssssasssnses 132
44.2. STRUCTURES ..cuuiieuuiteuniienetrasssreesiraessrssstensstsasssrssssrasssssssstesssssnsssensssensssrsssssenssranes 134
45, ACCESSORIES AND CUSTOM OBJECTS .euuuieuusreannsranssrensersasisenssssasssmsnsssenssssnsssrsssssenssssnns 136
45.1. ENUMERATIONS .ecuituuieeireeireeernnerniressesioesrsesssssessssnsssssssssrssersssrssssssssesssessssssasssnses 136
45.2. EVENTS ouiieniieiitiiitniiieiitiiiiieiieiiteiisesioeiroeiraeiresiesssessssssnssersssrssssssssnsssessssssasssnsses 140
45.3. CREATE FIXED CUSTOM OBJECT .. ceuuiteeuirensirensireansmnsiraessrssssmesssmsassssnssssasssrsssssenssssnns 143
45.4. DEFINE CUSTOM OBIECT ..ieeuuureenassersennssssssnsssssennssisnesnsssssensssissenssssssenssssssensssssssnnses 144
45.5. DELETE CUSTOM OBJECTS ceeuuuurernusserennnssnennssissennssssnesnsssssesssssssenssssssenssssssensssssssnsses 147
46. ACTIONS AND BEHAVIOUR ...ccuuiieuniienniienniiineiienireeirensiieneiieeesirensiresserenssrssssrsesenenss 148
46.1. ENUMERATIONS ..uteuuiieenirenniieneiireeireesireesirensisesssetseserssseresserensssessssessssrsnsssensssensnss 148
46.2. EVENTS tieeeuiriernniriinnniniennsiinernssierennssissensssistensssissessssissessssissesssssssenssssssenssssssennses 149
46.3. STRUCTURES ..eevuuuertennssersenssssseensssssenssssssesssssssenssssssesssssssenssssssenssssssenssssssenssssssensses 150
46.4. BEHAVIOR CONTROL AND ASSUME BEHAVIOR CONTROL .ccureuuirennirenensenesireeserenserensenenenes 153
46.5. CANCELACTION BY ID TAG .ccuuirermuniirernnninnennuniniinnnsisnennssisnenassisnessssisnenssissenssssssensses 155
46.6. CANCEL BEHAVIORcuuiiineniintiiieiieeiieesiieesireeeitineiireeseressireeserensssessssenessrssssrsnsenenns 155
46.7. LOOK AROUND IN PLACE ..cceuuuirirnnnniriennniininnnsinnennssisnesnssisnensssisnensssissenssssssenssssssensnes 156
47. Y I N 157

ANKI VECTOR - 2021.02.14

vii

47.1.
47.2.
47.3.
47.4.
48.

48.1.
48.2.
48.3.
48.4.
48.5.
49.

49.1.
49.2.
50.

50.1.
50.2.
50.3.
50.4.
50.5.
50.6.
50.7.
50.8.
51.

51.1.
51.2.
52.

52.1.
52.2,
52.3.
52.4.
52.5.
52.6.
53.

53.1.
53.2.
53.3.
53.4.
53.5.
53.6.
53.7.
53.8.
53.9.

53.10.
53.11.
53.12.
53.13.
53.14.
53.15.

ENUMERATIONS «eveeeerueeereesssseeeesssssessssssssessssssssesssssssssssssssssssssssssesssssassesssssssssssnns 157
EVENTS «evvveeeeernreeessssseersssssseesesssssessssssssessesssssessssssssssssssssessssssssessssssssessssssssssesnns 157
ALEXA AUTHORIZATION STATE ceeuvvureeeessssneeesssssseesssssseesesssssessssssssessssssssesssssssssssssssnees 158
ALEXA OPT IN ceeeeiiuereeeiiiisreeresssseeeessssseesssssssessssssseesessssssssssssssessesssssesssssssssssssnnens 158
ANIMATIONvveeeernreeeeesssseeressssseesessssssesssssssessssssssssessssssssssssssessesssssessssssssesssssnnees 159
STRUCTURES «.ceeeeeuveeeerersssesessssseesessssssesssssssssssssssssssssssssesessssssssssssssesssssssnesesssnsaseses 159
LIST ANIMATIONS .eeuvveeereesseeeesessssessssssssessesssssessssssssesssssssessssssssssssssasssssssssssssssnns 159
LIST ANIMATION TRIGGERS ..vvveveeeesssseeeeessseessessssseesssssssessssssssssssssssssssssasssssssssssssssnns 160
PLAY ANIMATION ..ceecuvveeeeeerrseeeeeesssessssssssessesssssessssssssesssssssessssssssssssssassssssssnssssssnn 160
PLAY ANIMATION TRIGGER ...vvvveeeerseeeeeesssseesessssseesssssssesssssssesssssssnsessssasssssssssssssssnns 161
ATTENTION TRANSFER.....c.uveeeeeerseeeeesssssesesssssssesssssssesesssssssssssssssssesssssesssssssssssssssnees 162
EVENTS 1eutuienireieeiteienceerenceesessessensessassassassessassassassassassassassassassassassnssassassassnssnssnnss 162
GET LATEST ATTENTION TRANSFER..ccc.uveeeeeeerseeeesessseeesesssssesessssssesssssnsesssssssnssssssssassses 163
/YU 0 [0 S 164
ENUMERATIONS eeeeeeeueeersessseeeessssssessssssssessesssssessssssssessssssssssssssssssssssssssssssssssesssnns 164
EVENTS «evveeeeeereeeeeeesnneeeeesssneeeeessnsessssssnsesessssnsessssssnsssssssssessssssnssessssnnsssssssnsesssssnns 165
APP INTENT «.uveeeeeerneeeeesssseesesssnseeeesssssseessssnsesssssssessesssnsessssssnsessssssnsessssssnsssssssnnens 167
AUDIO FEED (FROM THE IMICROPHONES) ..cceeuvveeerueeresseeeessesesssenesssssesssseessssessssnssssnsssnns 168
AUDIO PROCESSING IVIODEc.uuueeeeeeineeeeeessneesessnneesesssnseesssssnsessssssnssssssssnssssessnnens 169
EXTERNAL AUDIO STREAM PLAYBACK ...ceeevvererueeeerseesesseeeessseesssssesssssessssessssesessasesssnsens 170
IVIASTER VOLUMEvveeereerneeeeeessnsessssssnseseesssnsesessssnsesssssssessssssnnsessssnnsssssssnsesssssnns 172
N I 2 N 173
BATTERY ..eeteieeieeeeeessneeeeeesssneeeesssnsessesssnseseesssssesssssnnsssssssssesessssnssesssssnsssssssnsessessnns 174
ENUMERATIONS ceeeeeeueeeeeersneeeeessnsessssssnsesessssnsessssssnsesssssssessssssnnsesssssnsssssssnsesesssnn 174
BATTERY STATE «.eeeeeeerueeereessnneeesessnsessssssnsesesssssssesssssnsessesssssesssssnnsesssssnsssssssnsssesssnns 174
CONNECTION eeeeeeeuuereeeessuseesssssseeesssssssessssssssessssssssssssssssesesssssassssssnsesssssssnesssssnnaseses 175
EVENTS «evvveeeeereeeesesssseessessssseessssssessssssssessssssssesesssssssssssssseesssssssesssssanssssssnssesesnns 175
EVENT STREAM ..eeeeeeerveeerressseeeessssssessssssssessssssssesssssssssssssssssesssssssesssssssssssssssssssssnns 177
PROTOCOL VERSIONvvveeeernveeeeesssseesesssssessssssssesssssssssssssssssssssssssesssssssssssssssssesssnns 178
SDK INITIALIZATION eeeecuuveeereersseeeesssssseesssssssessssssssssssssssesssssssssssssssssssssssssessssssnassses 179
USER AUTHENTICATION .cceeeeuuveeeeeesssseesesssssessesssssessssssssessssssssssssssssessssssssssssssnssssssnn 180
VERSION STATE «eeeeuuueeeesssrsseessssssseesesssssssesssssssssssssssesesssssesssssssssssesssssessssssssssssssnsees 181
CUBE cueuieiieeierentetnrentanratossassassassassassassassassassassassassassassassnssassnssassnssassnssassnssnssns 182
ENUMERATIONS eeeeeeeueeerresssseeessssssessssssssessssssssessssssssesssssssssssssssssessssssssssssssssssssnns 182
EVENTS «evvveeeeerneeeesssssssessesssssesesssssessssssssessssssssessssssssssssssssessssssssesssssassesssssnssssssnns 183
CONNECT CUBE ..uuteuienientasiastasrassas 184
CUBES AVAILABLE ...ceeeeeruueeeeeessseeseessssseesssssssssssssssessssssssesessssssssssssnsessssssnsssesssnnasesns 184
DISCONNECT CUBE c..uuvveeeeeersneeeeeessnsessesssnsesessssssssessssnsesssssssesssssssnsesssssnsssssssnsessssnnns 185
DOCK WITH CUBE .. cuueuiiuieniieiencenrencensentassassansassassassossassassassassassassassassassassassassassanse 186
FLASH CUBE LIGHTSvvveeeeesueeeeeessnseesesssnsessessssseeessssnsessesssssssssssnnsesssssnsssssssnssssssnns 187
FORGET PREFERRED CUBEvvveeeeessereereessneeeeesssneeeessssnsessessssssssssssnsesssssnsssssssnssssssnns 187
PICKUP OBJECT ..eveeeeereeeereessseeeeeessnsessssssssesesssssssesssssssessssssssessssssnsessssssssssssssssesssnnns 188
PLACE OBJECT ON GROUND HEREccceeerueeeeeerneeeeeesssnnessesssesesssssnsesssssnsessssnssesssnnns 189
POP A WHEELIE.....ccccssueeeeersueeeesessssessssssssesssssssssesssssssessssssssesssssnnsesssssnsssssssnssesssnns 190
ROLL BLOCK ..cutiuiiniieiencenienceetencessentensastassanse 191
ROLL OBIECT ..uvuvveeeesneeersesssseeesssssseesssssssessesssssessssssssesssssssssssssssnessssssssessssssssssssnns 192
SET CUBE LIGHTS ...evveeeeruueeeresssseeessssssseesssssseessssssssesssssssessssssssssssssssessssssssesesssnsasssns 193
SET PREFERRED CUBE......uvveereesreeesesssseeesssssssessssssssesssssssessssssssesssssssessssssssesssssssasenns 194

ANKI VECTOR - 2021.02.14

viii

54.
54.1.
54.2,
55.
55.1.
55.2.
55.3.
55.4.
56.
56.1.
56.2.
56.3.
56.4.
56.5.
56.6.
56.7.
56.8.
56.9.
56.10.
56.11.
57.
57.1.
57.2.
57.3.
57.4.
58.
58.1.
58.2.
58.3.
58.4.
58.5.
58.6.
58.7.
58.8.
58.9.
58.10.
59.
59.1.
59.2.
59.3.
59.4.
59.5.
60.
60.1.
60.2.
60.3.
60.4.
61.

DIAGNOSTICS ceeureuirunrrenreesrsesrassrassresssestaesrossrassrasssssssssssssrssersssrssssssssesssessasssasssasses 195
CHECK CLOUD CONNECTION «.utuuieenieerensrassrassrnsssssssssrsssrsssrssssessssssasssasssasssnsssnssssssases 195
UPLOAD DEBUG LOGS.....ituiieeiiuirainenirenieeiioimeiraiisesisesmsssmsssrssrasssesssesssessasssasssasses 196
DISPLAY euuieuirenireniruireiisentsesrassressresisestossrossrassrasssssssssssssrsssrsssrassrssssessssssasssasssnsses 197
EVENTS ouiieuiieireireiireiieeiinesiesreimesisesioesmassrassrasssssssssssssnsssrsssrasssnsssnssssssasssasssnsses 197
DISPLAY IMAGE RGBcccuuuiiirnnniiiinnnniiiineniiiiinnniiiiinsiniiessiiiesseniisssiissseiisss 197
ENABLE IMIRROR IVIODEccuuiimuiiiieiiieaiiieeiireniiieeiieeireasseessssassssnssssnassrensssensssennsss 198
SET EYE COLOR.ccuutttrennertennnnirtennssesernssisnersssienerssssssessssessesssssstesssssssenssssssenssssssannses 198
Y o 5 199
ENUMERATIONS ..uuieuuiienniiennieneireeireasireesireassrasssreessresssrenssrensssrasssessssmensssensssennsss 199
EVENTS 1uuiiieenniiiineniiiinnniiiimeeiiniienseriiesseriisssseriiesssestessssestessssessessssessessssessessssses 200
CANCEL FACE ENROLLIMENT «.eeuuiteunireesirensrensireassressireessreassreassseasssensssensssssnssrenssnenns 202
ENABLE FACE DETECTION ...ceuuuieeuuireesireusirensirransenssireessresssrenssseasssmssssrnsssmensssensssennsss 203
3T T R ¥ o 204
ERASE ALL ENROLLED FACESccuuuiieuiiiieiiieeiiiieniiietireeireaiseasessaessaassseassnsasssensssennnss 204
ERASE ENROLLED FACE BY IDceuuiieeiiiiiiiiiiiiieiiiniiieicieaiteecneneistneisneesenenssnenseneneans 205
FIND FACES ..c.uiieuiiiiiiiiieiiitiiiiiiiteiitiiiiteeeteeeistnsistaeietessstesseressistssssesssensssesensensnsans 205
REQUEST ENROLLED NAMESccuuiemuiiimuiimeineniriniiteeieieniieeireasietssismsesrssserensenennans 206
5723 1 27 Yol 3 o 3 1o PR 207
UPDATE ENROLLED FACE BY ID..ccuuiieuiiiiniiiiniiieniiiniiiieiiieaiieeineaisineiineeenesseneasenennnns 208
FEATURES & ENTITLEMENTS ...ceuuueiiirueseiiernesssiernssssmmsnssssmesnsssssesnsssssmsnssssnesnsssssesnssssns 209
ENUMERATIONS c.uteuniieenirennireneieensieressireeereasisessisessserssserssserssssstssssessserssssssnsessnsass 209
GET FEATURE FLAG ..euuiiieiiiiiiiiiiiiiiieiiiiiiieineeiiineiiteeetesieteeseneasissnseseseerssssnsnsenenes 210
GET FEATURE FLAG LIST..ceuuiiiiiiiiiiiieeiiiiniieniieninieiiteieienineeereasiesssiseseserssssssssensnss 211
UPDATE USER ENTITLEMENTS ..euuteeeiereenireeereasirensieeasierssseressereasistssssrssserssssrsnsesensans 212
LY.V 28 o 1T 0T 3 | 213
ENUMERATIONS .ecuiiuuieuireeireeernnsinireieesroesrssisasseassessssssssssrssersssrssssnssssssssssssssasssnsses 213
EVENTS ouiieniieiitiiiteiiieiiiitiiieiiieiiteiisesioeiraeitasieessesssessssssrsssrsssrssssssssasssessssssasssnsses 213
(71,127 0= = o 215
CAPTURE SINGLE IIMAGE ..ccuuiteuuiieenireeiiensiieneiieasiiesiraesirsassieassssassenssssasssrsssssenssssnns 216
ENABLE IMAGE STREAMINGccuuuieeuuireusirensirsasisrasisraesmssssrenssmsasisrsssssssssmsnsssenssssnnnss 217
ENABLE IMARKER DETECTION teuuteuitenieenseereniraeirnnirasssnsssnsssssrssersssrssssssssesssessssssnsssnsses 218
ENABLE IMOTION DETECTION .euuieuiteeseesseeronsraesracsrasssnsssnsssssrsssrsssrssssnsssasssessssssasssnsses 219
GET CAMERA CONFIG ..uuieuuuirennsreenireesirensiiensiieasismssssrasssmssssiesssmsasssenssssnsssssssssenssssnns 220
IS IMAGE STREAMING ENABLEDcccuuiieutiieeniieaniirntireeireasiieasireassrnassreessssnsssensssennnns 220
SET CAMERA SETTINGS .. teuuuteeuitmunerennereusirensereasistssserssserssserssserssssssssssessserssssssssersnss 221
INTERACTIONS WITH OBJECTS ..ceuuuienunirennireenereanirensieeaeierssserseserensisrssssrseserssssrsssesensnss 222
STRUCTURES ..ceuuteunirensireneieeessteesersesersssersssereasistssssessserssssrssserssssssssssensssrssssssnsensnss 222
DRIVE OFF CHARGERteuuiteutireneierenireusireesereasisensistseserssserssseresssstssssesssenssssssnsesensass 223
DRIVE ON CHARGER .c..uteutitianitneitnesiteesireesereasisessstseseresseresssrensssessssesesersnssrensssensnss 223
GO TO OBJECT ceuuuerrennnnereennssisnennsesernssissersssissessssissesssssssesssssssenssssssenssssssenssssssansnes 224
TURN TOWARDS FACE «..ceuuuitnenireenirensireneereessrsssirsesiressisessssesessrssssressssensssrssssssnserenss 225
] 0 0 oSN 226
ENUMERATIONS ...uteuniieenirenniieneiiieeireesimeesireasistsssseseserssseresserensssessssrsessrsnssrensssennnss 226
STRUCTURES ..euutteuuireunireneiieasssteesirsesersusereesereasisessstrseserssssteesersnsssessssensssrssssssnsensnss 226
EVENTS ouiieniiiiiteiiiuiiieiieiteeraiiteiteiteesioeitosimasirasssssssssssssrsssrsserasssnsssesssessasssasssnses 227
T o T T ol N 227
IVIAPPING ..cuiieuiieiituniiuiieeiieeiiniteieeiieesioeitoeimosiresssnstsssssssmsssrsssrssssasssesssessssssasssnses 228

ANKI VECTOR - 2021.02.14

ix

61.1. THE NAVIGATION MAP FEED...cuuteuteueraserassresssessoesrossrassrasssnsssssssssrsssrssssesssessasssasssnsses 228

62. IVIOTION CONTROL ..vuuteenreenreesransrasseesseesiossrassrassrasssnsssssssssssssrassrasssssssessssssasssasssasses 230
62.1. DRIVE STRAIGHT c.uutiuuiienesrrusirnessrasssrssssrasssrsasssrsssssasssrsssssssssssssssssssssasssssnssssnssssnssss 230
62.2. DRIVE WHEELS .. tuutuuteeieesteesransrassresisesiossrassrassrasssssssssssssrsssrsssrsssssssssssssssasssasssasses 231
(2725 TR CTo T (o oo L U 232
62.4. IMIOVE HEAD.....ceuuuiiiimnnniiiinnniiniitaniiniinnsiiniinasiintenasienersssieserssssssessssssserssssssersssessenes 233
T |/ [0 1Y = T N 233
62.6. SETHEAD ANGLEuiiireuuiiiinnnniniinnnsinitnnsiertenssieseenssieserssssestessssssessssssserssssssersssssenas 234
62.7. SETLIFT HEIGHT teeuuiiiirnuuiiiinnniniinnniniinnsiiniinnsiereenssiererssssentesssissersssssserssssssenssssssenes 235
62.8. STOP ALL IVIOTORS....cceuuuiirtnnnnirtinnnnintennssertennsseseenssieserssssentessssssersssssserssssssersssssenes 236
1 O V0 I o 7Y o RN 237
63. IMOTION SENSING AND ROBOT STATE...ccuuiteuuireaniienniirenirensireesireasismassimsessmenssseassrennsss 238
63.1. ENUMERATIONS ...uveuuiieeniiennieneireesireasiieesireassrasireessmesssrensereasssrasssrssssmensssensssennsss 238
63.2. STRUCTURES...ccetuuuitttrnnsirtennssestersssereessssestesssseseessssesersssssserssssssersssssserssssssensssssenas 238
63.3. EVENTS iiiteeuuiiiirnnniiiinnniiiinneertinnsiereinssiertesssiestesssieserssssestessssssesssssesessssssserssssssenns 240
64. ON BOARDING ..teuuirensireneserasistseersesersssersssereasistssssrssserssssrssserssssssssssessssrssssssssersnse 242
64.1. ENUMERATIONS c.uteuuireenireanireneieeesiereesireeereasisessistasserssserssserssssssssssessserssssssnsessnsass 242
64.2. EVENTS .iiiieeuiiiiinnniiiinnniiiiinnssiniinasiniimsserienmsestenssestssssestessssssesnsssssssnsssssesssssssenas 243
64.3. ONBOARDING COMPLETE REQUEST ...ceuueteusirennerenniseneiieeeersnsireeserensisesssssssserssssrsssensnne 244
64.4. ONBOARDING INPUT .eeuuiiiiiiieiiitieiiteeiteeiieeereesiitmeiieeeieressereesersasissssssessserssssrsssensnse 244
64.5. ONBOARDING STATE .euuuieeuireeestneereeereasireesereasistssieessserssserssserssssssssssessssrssssssssensnse 247
64.6. ONBOARDING WAKE UP REQUEST «..ceuueteusirennerennirenniieanierensereesereasisssssssssserssssrsnsensnse 247
64.7. ONBOARDING WAKE UP STARTED REQUEST...ccuctteeitmuiirnnerensireescrensirensiseneierssssrensensnes 247
65. o 000 248
65.1. STRUCTURES .ceuuteenitensireneirtesistneserseerssserssseressistssssrssserssssrssserssssssssssessssrssssssnsensnse 248
65.2. EVENTS iiiieeuuiiiirnnniiiinnniininneertinnsiireisssiestesmsiestesssieserssssestessssssessssssserssssssesssssssenns 248
65.3. [11 1 = [0 o NN 249
65.4. PHOTO ..ciittuuuiirirnnniiiinnniiiinneiiiiinasiereisssiertesssiestesssiestssssiestessssssesssssssesssssssesssssssenns 249
65.5. PHOTOS INFO. . cuituuituiiteiititiiiiiiiniiieiiieiieiinitaiteieetenstsserssersserssssssssesssessssssasssnsses 250
65.6. THUMBNAIL. c..cutteeieeiteniteitaeteineeeteeteitessesssestaessasseassessssssnsssrsssrssssasssessssssasssnsses 251
66. SETTINGS AND PREFERENCES...c.uituuuiteessreussrenssseasismassraessrssssmesssssasssssssssnsssssnsssenssssnns 252
66.1. STRUCTURES ..cuuieuuiteuniienesrasssreesiraessrsssstensstsasssrasstrasssrsssstesssssnsssensssensssrsssssenssrenns 252
66.2. UPDATE SETTINGS ..eeuuuteuureunienusireessmeussreesirsasisessssraessmsssssenssmensssssssssssssssnsssensssennnss 252
66.3. UPDATE ACCOUNT SETTINGS ...ceuuuieeuusreusirensersasisensssrasssmssssrensssenssssssssrssssssnssssnssssnnnss 253
67. SOFTWARE UPDATES ..c.uieeuuireusireesireesiisasiiensiirasismasiraessrssssiesssssasssesssssasssrsssssenssssnns 254
67.1. ENUMERATIONS eeuuiirirnnneriennssesnennssissensssestsnnssssssnsssssssssssssssssssssesssssssesssssssesssssssenns 254
67.2. START UPDATE ENGINE ...ccuuiieuniimnireniineniiiniieneiiiniiteeieieiireeeressieesssseseserssssrsssenenss 254
67.3. CHECK UPDATE STATUS ceuuutitruuuirterussisnennssisiennssesssnsssssesssssesssssssssssssssssesssssssesssssssenns 254
67.4. UPDATE AND RESTART ..cuuutiuniieneiereeineuserennimensistnsieeseierssserssseresssstssssessserssssrsnsesensnss 255
68. HISTORICAL ODDITIES...ceuuiteunieneiernesreuserensereasisenssersesersssereassrenssssssssesessrsnssrensssennnss 255
CHAPTER 16.....ciiiuuuuiiiinnnniiiinnnnesiennnnsieennsisnernnsssseennsssseensssssernsssssernsssssesnsssssenssssssenssssssenas 256
THE WEB VISUALIZATION PROTOCOL ...ciieeuuueiieennniriennnsreennnssreennssirsennsssseonsssssssnssssssennnes 256
69. COMMUNICATION OVERVIEW .c.uiieuuieeenirenserenserensisenssrsesersnssreessrsnsssessssssessrssssrsasersnss 256
69.1. CONSOLE VARIABLESieuuuieeunieeesireeserensireesereasismsssirseserssssreessrensssessssessssrssssrsnsersnss 257
70. WEBSOCKET OVERVIEW ..ccuuiieuniimenirennirenserensimensisesssimsesersssereessmensssessssessssrssssrsasensnss 257
70.1. SETTING UP THE COMMUNICATION CHANNEL ..ccuuteunnirneniransrenssrenssrenssssnssssnessrssssrensensnns 259
70.2. RECEIVED EVENTS ...tuuiiuiieeiineirniieiieeiieeiioiioiioiraiienisssisssrssersserssssesssesssessssssasssnses 260

ANKI VECTOR - 2021.02.14

70.3. POSTED EVENTS. ccuituiteitieiiiiriiieiieiitenioeiioiraireiseisesmsssmssersserasssssssesssessasssasssnsses 275
CHAPTER 17...0ccuiiieuiiinniiianniienninenninenninennineanistensieensenensirenssseasstssssessscnenssressereassseasssennsses 278
THE CLOUD SERVICEScitteuueiiirnnuniiirnnnniiirnnssiieennsiiesnesiieesnssisiennssiieensssisesnsssisesnssssseennnes 278
71. CONFIGURATION .. cuutteteeernesressresseesiossrassrasssssssssssssrsssrsssrsssssssssssasssasssasssassssssssssases 278
72, JDOCS SERVER ..euuiienenrrnnssrnescranssrsnssrenssssasssrssssrssssrsasssssssssassssssssssnssssnssssnssssanssssnss 279
72.1. JDOCS INTERACTION ceeeeuuuerrernssessennssessenssseseesnsseseessssesersssseseessssssesssssssenssssssenssssssenns 279
72.2. [1= 13 100 T Lol UV = 280
772 TR o/ [0 3 N 280
72.4. READ DOCUMENTS ..ceuutieueireansienesirnessreasireesireassseasssmasssmssssrensssensssrssssessssrsnsssensssennsss 281
72.5. READ DOCUMENT ITEM .ccuuiieniiinniieeiieeniieeiieeeiiresireesireasreasssassssnssssnessrensssensssennnss 281
72.6. WWRITE DOCUMENT ...ceuutieneuirensireesireesireasreassseasssrssssrasssresssmesssrsnsssensssensssrsnssrenssrenns 282
72.7. OTHER AREAS ...uieuuiieuniieneirensireesireesireassieesiseasssmsssimeessmesssiesssssnsssessssensssmenssrenssrenns 282
73. NATURAL LANGUAGE PROCESSING ..ccuuuieuuirensirenniiennirensirensirenssreasismssssmeessmeassreassrennnss 283
73.2. PARAMETERS FOR THE CLOUD INTENTS ..cuuuieuuireuniirenireeirensirensemeasismassmeessmsnsssensssennnss 283
74. LOGS AND TRACE DATA..cuuuieuuuienenirenssrenssrenssreasssrssssrasssmsssssesssssassssassssssssmsnsssensssennsss 285
74.1. LOG UPLOADER ..c..ttuuiteenitennireneieineitenireesereasisensistaserssserssserssssssssssessserssssssnsessnsans 285
74.2. CRASH UPLOADERteuuiieneireenstneserenserssseresserensistssserssserssssrssserssssssssssessssrssssssssensnse 286
74.3. DAS IMANAGER.....ccitttuutirtinnsnirttnnssirttnusierttnssiertenssiesttsssiestrsssissessssiesesssssssesssssssenns 287
75. REFERENCES AND RESOURCES ...ccucteeeuireunireenerensirensiseasiersnseressereasistsssrsssersssersnsesensnns 287
PART IV ..ccuiiiiineniiiinnnniiiinnnnesiinnnnisiinnssssiisnssssiisnssssiisnssesiesnsssseisnsssseesnsssseennsssseennssssesnnsssnes 289
ADVANCED FUNCTIONScccccetttmunninienunnsriennsisnennssisiennssisnesnsssssennsssssensssissonssssssenssssssennses 289
CHAPTER 18.....cc000uuuiiiinunnaiiinnnniiiennsniniinnsnsiiinussssiennsssieennssseenssssseenusssseenssssennsssssesnsssnenns 291
AUDIO INPUT....c0uuetitmunneiienusniriennsssernssisreensssssesnsssssensssissesnssissensssissensssissensssissenssssssennses 291
76. AUDIO INPUT ceeuuiiiirnnnirirnnsiisisnssiisisnssissisnssessisnssssstsnssssstsnsssssssnsssssssnsssssssnsssssssnsses 291
76.1. THE MICROPHONES AND CONVERSION TO AUDIO SAMPLEScc.coteeuerennirennerenniernnsesenenenes 292
76.2. SPATIAL AUDIO PROCESSING ..eeuuireusiranssreussrenssssasssasssrasssrssssmesssssnsssenssssnsssssnsssenssssnss 294
76.3. [\ [0 38 211 » U Ton 1 o NN 295
76.4. DETECTING ACTIVITY tuuteuureuireeeransrassassasrensrsessasseasssnsssssssssssssrssssssssnsssesssessssssasssnsses 295
76.5. BEAT DETECTION .eutuureureesreecransrnnseessessoesrsessssseasssnsssssssssssserssssssssssssssssessssssasssnses 296
76.6. RECORDING TO A FILE..cuuteuiteeeraesraseaseesronsraessassensssnsssssssssrsssrssssssssssssesssessssssasssnses 298
76.7. VOICE ACTIVITY DETECTOR AND WAKE WORD ...ccteutieeiraeiennrennsnsrencrssernsssnssesssessscssnsnes 298
76.8. CONNECTIONS WITH VIC-GATEWAY AND SDIC ACCESScccuuiieuniienniireniiinnireesineairensenenes 300
77. CLOUD SPEECH RECOGNITION ...uveuuireensreussrensireasiseassraessrssssmesssssnsssmnssssasssssnsssenssnsnns 301
77.1. INTENT PARAMETERS ..euuteeiteeereesrnseaisesronsrseieassenssnsssssssssssssrssssssssnsssesssessssssasssnsses 302
77.2. INTENT MAPPING CONFIGURATION FILE «..cuureuireeireniennsennsensnsecrssersserssssnsssesssessssssnsssnsses 304
78. REFERENCES AND RESOURCES ...ccuuttuuuireunirenseneasirensieeneersnsereeserensistssssmssserssssrensesensass 305
CHAPTER 19.....c0iiiuuuiiiinnnniiiinnnnesiennsnsneennssrernnssseennsssseennssssernsssssernsssssesnsssssennsssssensssssenns 307
IMAGE PROCESSING....c000uuuetitrnnnesrirnnnssrernsnersennssersennsssssesssssssesssssreesssssrsesssssseesnsssseennsssses 307
79. CAMERA OPERATION .euuuieeuuieeunseeesereesereusereesereasisessserseserssssresssrensssessssensssrssssrsnsersnss 307
79.1. (07.Y,V/1 35730 1 17 o 308
79.2. CAMERA CALIBRATION ...eeuuieeenireenirensirenserenserensisessssrseserssssreessrsnsseessssessssrssssrsnsersnss 308
79.3. CORRECTION..ciittuuuerrerassesrennssesserssserersssssseesssseseessssssessssssserssssssessssssserssssssersssssenns 309
79.4. VISION IMIODES ...ccucviirnnniriinnnniniinnssininnnsieniennsieseenssissessssseserssssssessssssserssssssesssssssenns 310

ANKI VECTOR

- 2021.02.14

Xi

79.5. ILLUMINATION LEVEL SENSING c.uteuteuseesseenransrossrassrasssnsssssssssrsssrsssrssssssssesssessasssasssnsses 311

79.6. VISUAL MOTION DETECTION .ccuuerernnneerennnnereennseesenssneesenssseesenssseessnssnesssnssseessnsssennns 311
80. THE CAMERA POSE: WHAT DIRECTION IS CAMERA POINTING IN? .c...vreenneerrennnecerennneeeennnes 312
81. IVIARKERS «.eeeuueereennneereennneeseensseseesnssessesnssessesnssessssnssessssnssessesnssessennssesssnnssnsesnnnnanes 313
81.1. THE INITIAL PREPARATION STEPS .eeeuuuereenneneeeenseerennssaesssnsssssnnsseessnnsssssennssssssnnssssssnnnes 314
81.2. DETECT AND ANALYZE SQUARES ...ceuueeeemnnneeeennnsreenssssrsensssssesnsssssesnsssssennsssssenssssssennnns 314
81.3. DECODING THE SQUARES ...ceuuueereruneerrennseerensssssesnssssssensssssssnsssssesnsssssenssssssennsssssennnns 315
81.4. REVAMPING SIZE AND ORIENTATION....cceuuueeeennensreensssereenssssseensssssesnsssssennsssssennsssssennnes 315
81.5. INFERRING KNOWLEDGE ABOUT OBJECTS ceuueeeenuensreennsereensssssesnsssssennsssssennsssssenanssssennnes 315
82. FACE AND FACIAL FEATURES RECOGNITION ...cceuuirrrnneesreenssesreenssessennssessennssessennssessennsnnes 316
3 2% W o7 Vol = o] 23 1 T ot 1 (o] N[O 316
82.2. FACE IDENTIFICATION AND TRAINING ...ceeuuueeeennenereensssersensssssennsssssenssssssennsssssennsssssennnes 317
82.3. COMMUNICATION INTERFACE ...cceeuueereennnneeeensssseenssssrsensssssesnsssssennsssssennsssssennsssssennnes 317
83. TENSORFLOW LITE, DETECTING HANDS, PETS... AND THINGS?....ccceucirremenncrrenensesrennnessnennnes 318
83.1. DETAILS ON TENSORFLOW LITE «.ceeuuuereennnneeeennncereennsaereennsseseensssesesnsssssennsssssennnssssennnns 318
83.2. OTHER IDEAS THAT WEREN’T FULLY REALIZED AND FUTURE POTENTIAL eecuueerennneeeennnneceeennnes 320
84. PHOTOS/ PICTURES.....ettveesereressesrernssessessssessessssessesssssssessssessessssessessssessensssessssnsnenes 321
84.1. COMMUNICATION INTERFACE ...cecuuuuerrennsensennsssssnssserssnsssssssnsssssssnssssssnnssssssnnssssssnnsns 321
85. CONFIGURATION FILES...uucterueseesennsssssenssssssensssssssnsssssssnsssssssnsssssssnssssssnsssssssnnsssssannses 322
85.1. VISION CONFIG ceuuuirerunneerennsssesennsssssensssonsensssssssnsssssssnsssssssnssssssnsssssssnsssssssnnssssssnnsns 322
85.2. SCHEDULE MEDIATOR CONFIGURATION FILES..ccuuueteenesersennsssssenssssnsnnsssssennssssssnsssssssnnens 328
85.3. PHOTOGRAPHY CONFIGURATION FILES eceuuuereennsnersennssensenssssssnnssssssnnssssssnnssssssnnssssssnnses 328
86. RESOURCES & RESOURCEScceuuuiiirnnsssiennnsssiesnsssssesnsssssesssssssesnsssssssnsssssssnssssssnnsnses 329
CHAPTER 20.....ciieueueeiiennnaeiinnnnseiennssessennsssseenssssssennsssssensssssssnsssssssnsssssssnsssssssnsssssssnssssssnns 331
MAPPING & NAVIGATIONcccueeiieunnaeiirannasriennasiesnssssresnssassesnsssssssnsssssennsssssssnssssssnnsnsses 331
87. IMAPPING OVERVIEWcecuueereennneereensneereenssessesnssessesnsssssesnssessesnssessennssssennssssssnnnnanes 331
88. IMAP REPRESENTATION ..ccuuuiiiennnereensneereensseeseenssessesnssessesnssessesnssessennssasssnnssasssnnnnanes 331
88.1. QUAD-TREE MAP REPRESENTATION BASICS ..ceeuueereennnereenssaaseenssassennsssssennsssssennsssssennnes 332
88.2. THE MAP’S STARTING POINTuiiiiuuiieennnieeeennneereenssaereennsaeseensssesennsssssennsssssennnssssennnes 332
88.3. HOW THE MAP IS SENT FROM VECTOR TO SDK APPLICATIONS ...ccceuuereeenncerennsecsrenaneanennnes 333
89. MEASURING THE DISTANCE TO OBJECTS «.ueeeuueereeensnesseenssessesnssessennssessennssessennssesssnnnnanes 333
89.1. FILTERING eeuureeruunrrernnneerennnseesennseseenssssseensssssesnsssssssnsssssennsssssesnsssssennssssssnnnssssennnns 333
89.2. INTERNAL DATA STRUCTURESceeeuuuereennneneenssssennsssessensssssennsssssesnssassennssssssnanssssennnns 335
90. BUILDING THE IMAPuieeeeeeereennneereensseeseenssessesnssessesnssessssnssessesnssssssnnssesssnnssesssnnnnanes 337
90.1. MAPPING CLIFFS AND EDGESeeeeuueereennseeseenssassennsssesssnsssssssnsssssesnssssssnnssssssnnnssssennnns 337
90.2. TRACKING OBJECTS . ceeuuueerennsneerenassessensssssssnsssssssnsssssssnsssssssnssssssnsssssssnsssssssnsssssssnnses 338
90.3. BUILDING AMAP WITH SLAM.....ccuriiiineiiiiinnietienesieneennsissssnssissssnssssssnnssssssnasssssennnes 338
91. NAVIGATION AND PLANNING ..ceuuteitirneneetinnnsesiesnssessesnsssssesnsssssesnsssssssnssssssnnssssssnnsnssns 339
92. RESOURCES & RESOURCES ..c.uuivueiirnessinnscrenssrenssssnssssssssrsnssrsnssnssssssnsssssssssssssssnssssnssss 339
CHAPTER 21......ccceueeiiiineneeiinneneeienneeseenasneeeenasnsseennsnsseenasssseennsssseensssssesnsssssesnsssssennsssssenns 340
ACCESSORIES.ccceeiimuneeiennneeiennsaeeeenansereennssseesnssaseennsssseesnsssssennsssssennsssseonnssssssnasssssenanas 340
93. ACCESSORIES IN GENERAL «.cccuuuiiemeneirrenesesrrensssssrenssssssensssssssnssssssenssssssensssssssnssssssannnes 340
03,1, DOCKING cceuuirrrnnneerernnneerennsseerensssersenssssssensssssssnsssssssnsssssesnssssssnnsssssennsssssenasssssennnns 340
94, HOME & CHARGING STATION ...ceuuienensrnessrenssrenssssnssssssssrssssrsnssssnssssnsssssssssssssssnssssnssss 340
94.1. DOCKING ceuuuirerenneerernnneerenmseesensssersenssssssensssssssnsssssssnsssssssnssssssnnssssssnnssssssnnsssssennnns 340
95. COMPANION CUBE...cccuueeieeunneerennneeeensseseenssaesesnsssssesnssassssnssssssnssssssennssssssnnsssssennnes 341

ANKI VECTOR - 2021.02.14 Xii

95.1. COMMUNICATION ... ituuiienenirasssraessranssmssssresssssasssrssssrasssrsssssesssssnssssnssssasssssssssanssssnss 341

95.2. ACCELEROMETER ..eeeeeeeeerseererseesesseesesssesesssssesssessssssesssssssssssessssssssssssssasesssnsesssnsssnns 342
05.3. DOCKING veeeererererereereeeessessesssesssssesssssesesssesesssesssssssssssssssssesssssesssssssssasesssnsesssnsssnns 342
96. CUSTOM ITEMS «.vveeeereeeerseeessssesesssesssssssessssssssssssssssssssesssssesssssessssssssssssessnssessnsssssnns 342
96.1. A FIXED, UNMARKED OBJECT (CUBE-SHAPED) ...cc.ccueeersereerueeesssneesssneesssneessanesssnsesssnnennns 343
96.2. CUSTOM WALL DEFINITION .eeeevueerereeresseesessnesesssessssessssssesssssssssssssssssssssssssssnsssssnsssnns 343
96.3. CUSTOM CUBE DEFINITION .cceecueereeueererseeseseesesseessssessssssesssssessssssssssessssssssssssssssnessnns 344
96.4. CUSTOM BOX DEFINITION ...ceeeeruerereereseeseseesesseessssessssssesssssssssssssssssssssnsssssssssssnsssnns 345
96.5. COMMUNICATION .ccecuueerereererseesssseesesssesesssssesssessssassssssesssssesssssesssssssssssssssssssssnsssnns 345
PART V ..iiiiiiiiienienienienientensansessessessessessassessassassassassassassassassassassassassassnssassnssassassassassnssnssnns 347
ANIMATION......cciiieiiiieiieiiaeianrasiasrasrestastossastossassassassassassossassassassassassassassassassassassassassasse 347
CHAPTER 22......cciiuiiuiiieniieienceasentessessessassessasss 349
ANIMATION.....cciiiiiiiieiieiieereetaerasrasressastossasss 349
97. ANIMATION TRIGGERS AND ANIMATION GROUPS.....c.ccutrerueererseeessseesssssesssssesssssssnessnns 349
97.1. FILES .. euieitiieeieeieecreeeeereteeceerentessassessassassassessassassassassassassassassassassassnssnssnssnssnssnssnnss 350
97.2. NAMING CONVENTIONS...ceeeeeerrueeereersneeseesssneeeessssnssssssssssssssssnsasessssnsesssssnssssesssnnasssns 351
97.3. TRIGGER MAP CONFIGURATION FILESvvveeerueererseeeersesessannesssssesssssessssssssasssssnsssssnsennns 351
97.4. ANIMATION GROUP FILES «eeeeeerrueeereersneeseesssnneeesssssssssssssssssssssnsesessssnsssssssnssssesssnnssssns 352
98. ANIMATIONS «.veeeeeerrneeeeessseesessssseseessssssssssssssessssssssesesssnssssssssnsessssssnsessssssnsssssssnnens 352
98.1. ANIMATION TRACKS .eeeeerueeeeeersnneesesssneeseesssnnsessssssssssssssssssssssnsasessssnsessssssssssesssnnasssns 352
98.2. ANIMATION FILES...cceeeeerueeeeessnneeesessnseeeessnssessssssssssssssssssssssnsesessssnsesssssnssseesssnnassnns 353
98.3. ANIMATION NAMES MANIFEST...cceeteerrueeeeeessnneeessssseseesssssesessssnsessssssnssssssssssesesssnnssssns 353
99, SDK COMMANDS TO PLAY ANIMATIONSc..uveeeereeeesseneesseesesssessssssesssssssssssesssssesssssssanes 353
CHAPTER 23.....cuiieiiuiieieniinsensansentansasionsantossassossassassassassassassassassassassassassasssssassassassassassasss 355
LIGHTS ANIMATIONccicieuienianieniensonsansansassansassans 355
100. LIGHTS ANIMATION OVERVIEWceeeerueererseesessessessesssssesssssesesssssssssssssssssssssssssnsssssneens 355
101. CUBE SPINNER GAMEcceevueeeesueeresseesessessessesssssesssssesssssesssssesssssesssssssssssssssssssssasens 355
102. BACKPACK LIGHTS ANIMATIONueeeesreererseesessesssssesssssesssssesessssssssssssssssssssssssssssssnsens 357
102.1. TRIGGER MAP CONFIGURATION FILES «.veeeerueereeersereersssaesesssesesssssssssesssssssssssssssssssssasens 357
102.2. THE BACKPACK LIGHTS PATTERN ...cccevueererueesesseessssesssssesesssesesssesssssesssssssssssssssnsssssasens 357
103. CUBE LIGHTS ANIMATION ..cuveeeeseeresseesesseesessesssssesssssssssssesesssssssssssssssssssssssssssssssnsens 358
103.1. TRIGGER MAP CONFIGURATION FILES «.eeeeeueerereerseseesssseesssssessssessssssesssssssssssssssssssssasens 358
103.2. CUBE ANIMATIONS ..ceceeeeeerseeeesseesesseesesssesessssssssesssssssssssesssssesssssssssssssssssssssssssssasens 358
CHAPTER 24.......ccccuiiuiiuienienienieacentansescessassessassessassassassassassassassassassassassassassnssassassassassassnnse 360
VIDEQO DISPLAY & FACEccccuiteuieuueeuncencenscescreserasseassssssssssasssnsssasssnssssssasssssssnsssasssassssssans 360
104. OVERVIEW OF THE DISPLAY....cceeeersureereerssneesessssseeessssnsssssssssessssssssesssssnsesessssnasessssnnens 360
104.1. ORIGIN . cuieuienienienrententastessassnns 360
104.2. RENDERING SYSTEM ...ceeeeerrueeeeeessuneesesssseeesessssseeessssnsssssssnsessssssssesesssnsasessssnassssssnnens 361
105. IMAGE LAYOUT, COMPOSITION, AND SPRITE SEQUENCESccccruurerrerrueeeresssnneeessssnneesessnnees 362
105.1. BOOTANIMATION ...cuieuientenrentensassessessassnns 362
105.2. MAPPING ANIMATION TRIGGER NAMES TO LAYOUTSceeereeruneerrersseeesesssnnssessssnneesessnnees 362
105.3. LAYOUTFILE «euieuienienientensensensessassansassansnns 363
105.4. IMAGE IMIAP FILE...cuicuieuienientenienrensensessansassassassassassassassassassassassassassassassassassansassansnns 364

ANKI VECTOR - 2021.02.14

xiii

105.5. INDEPENDENT SPRITES ..ccuuireeusreussrenssrrassrenessrasssrssssrasssrsssssenssssasssssssssasssnsnssssnssssnssss 364
105.6. SPRITE SEQUENCES......ttuustreessrsnssrenssrsasssesssssasssrssssrasssrsssssenssssnsssssssssasssssnssssnssssnssss 365
105.7. DISPLAYING TEXT ON THE SCREEN ...ceeuereussiennssranssrnnssrenssrsnsssenssssasssrsssssasssssnssssnssssnssss 365
106. PROCEDURAL FACE ..euuteesteentsesrassrassresseestossrassrassrasssssssssssssssssrsssrsssssssssssssssasssasssnsses 366
106.1. THE RENDERING OF INDIVIDUAL EYESveuuuieueetraensrnnssrenssrsnsssenssssnssssssssrasssssnssssnssssnssss 367
106.2. THE PROCESS OF DRAWING THE PROCEDURAL FACE ...c..ceeuuirennsiennrennssrenssmeessnenssseasssennses 368
107. COMMANDS «rernunerrennssereennssestensssssersssssserssssesesssssssesssssssesssssssesssssssesssssssenssssssansses 368
108. REFERENCES AND RESOURCES ...ccuuiteuuireusirensireanirnsimeessmensireesimenssmssssmeessmensssenssrennsss 369
CHAPTER 25.....c0000uuueiiinnnneniinnnnsiiennnnereennsssreennssseennsssseensssssersssssserssssssessssssserssssssesssssssenes 370
AUDIO PRODUCTIONcoterueeeseennsnsseennsssernssssnesssssssesnsssssesnsssssesssssssesssssssesssssssesssssssennses 370
109. SPEAKER teeuuerttrnssentenassertenassestennssesersssssserssssesesssssssessssessessssssesssssssenssssssenssssssannses 370
110. SOUND EFFECTS FROM AUDIO FILES AND PROCEDURES......ccuutreusreasirennsennssenessmenssrensenenns 371
110.1. SOUND PLUGINS..cceuutirtrnnnirrirnnsssreransirtennssestensssessessssessessssessessssessessssessessssessensssses 372
110.2. AUDIO PIPELINE .c.uciuuiiinuireeiieuniieesireasiensseneirsasireessrsasstessssenssrssssresssssnsssensssenssss 373
110.3. HOW VECTOR USES WWISEceuuiieunireuniienniieeeireasireesireassienssseassrssssreessmsnsssensssennsss 374
110.4. EQUALIZER ..ccuuuiiirnnniiinnnniiiinnssisiisnssiriissssestissssessissssesssssssessssnssessasnsssssasnssessannsssnes 376
110.5. THE CONFIGURATION .. .ccuutteuuireunirensereasirenserensiersssrseserssssressesessssrssssrssserssssssasesensaes 377
110.6. THE SOUND FILES ...ceuuureeunreennsreuserensereasirensereasisrssssrsssersssssesseressssssssssssserssssssasessnssns 377
110.7. MAPPING AUDIO EVENT AND SOUND NAMES TO ID NUMBERS.....cccteuerenerensrenseessanssassrnnees 379
111. TEXT TO SPEECH. ceuuuieuuireneiitnenerennirensirensireaeietssssteesereasistsssessssrssssrsssessnssssssssssnsensnse 380
111.1. THAT DISTINCT ROBOTIC VOICE QUALITY ...uteuuremunirenireenerennirensereneisrsnisreesersnsenensesennaes 380
111.2. THE CONFIGURATION AND LOCALIZATION FILES ..eeuueteunirennerennirensirennierenisrensensnseneasenennans 382
111.3. CUSTOMIZATION...cttuureeerennsrenserensereasiresserensssrssssrsssersssssesseresssssssssssssersnsessasesensaes 384
112, COMMANDS «.vevuenerienassertennssesnenssesesnssissessssiesessssisnessssistensssissenssssssenssssssenssssssensses 384
113. REFERENCES AND RESOURCES ...ccucteeeuireunirenneneanirensireaniersnseresserensistssssrsssensssersnsenennans 384
CHAPTER 26.....iiiiuuuiiiinnnnniiinnnniiiinnsnsieinnsnsreesnsssseesnsssseesssssserssssssesssssssesssssssesssssssessssassenns 386
MOTION CONTROLccieeeeeeiiernnnasrernnnnsiennnnsseesnssessesnssssnesssssssesssssseesssssseessssssesssssssessnsssses 386
114. IVIOTION CONTROL..cuuuieuureunsienusreessreusireesersasisenssraessmsssssenssssnsssrassssssssssnsssenssssnnnss 386
T14.0. PATHS cuuiiiiteuiiirttteiiiiiinniiiiieneiiitiraeiitissssistessssesttssssestessssessesssssssesssssssessssessasssssses 386
0 07 07 = = - 7Y o 387
738 TR |V (o 2 o 3o]V 1 o S 387
114.4. BURN OUT PROTECTIONuiteuuireusirenssrenssrensssemsssrssssrenssrsnsssenssssnsssssssssasssnsnsssensssennnss 388
114.5. NOPINCHING FINGERS! .ccuuuiiiiuuiiiinnniiiinuniiniinmssiniismsissiisssssiisssssiisssssssssssssssssssssens 388
114.6. GETTING THE LIFT AND HEAD POSITIONS JUST RIGHT ..c..teuuireunniennsrnesrensireesimsnsimennssennnes 388
114.7. DIFFERENTIAL DRIVE KINEMATICS....ccuutteusienussemnsranssrenssmsnsssenssssnsssrssssmenssmsnsssensssennsss 389
115. MOTION CONTROL COMMANDSceeuuireunireenerennirennieeaeersnsersassrenssstsssssssserssssrsnsesensnss 390
CHAPTER 27.....c00iuuuuiiiinnnniiiinnnnesiinnsnssiennsnsseinssssseonnsssseensssssesnsssssesnsssssesnsssssennsssssesnssssenns 391
ANIMATION FILE FORMAT......c000uuuuitttnunnsreennsssernnsisnennsssssesnsssssessssissesssssssenssssssenssssssennnes 391
116. ANIMATION BINARY FILE FORMAT c...ceuuiiennrenenirensireesirensisensirseserssssressssensssrssssrsssensnss 391
116.1. OVERVIEW OF THE FILE FORMAT ..c..uieuuiiiutiiieiiiieiiieireeereasiiensesenesrsessreesensnsssensssenenes 391
116.2. RELATIONSHIP WITH COZIMOceuuireenirenniiennirennireeimeeserensirensssensssrsssemeesensnsssensssensses 391
117. STRUCTURES 1vtvuuuestenassessensssessennssssesssssssenssssssesssssssesssssssenssssssenssssssenssssssenssssssansnes 392
0t O L Y L T 392
0 1 L T 392
117.3. AUDIOEVENTGROUP ...cceuuuiirirnnnisrerassissinnssessinsssessissssessessssesstssssessessssesssssssessanssseses 392

ANKI VECTOR - 2021.02.14

Xiv

117.4. AUDIOPARAMETER ..cucteuirenirunirusssesrnesrnssresssesisessossrassrasssssssssssssrassrssssesssessasssasssnsses 393

117.5. AUDIOSTATE .ucreuuerennrennereasserssscrensersssesensessnssesnssssnssessnssssnsessnssssnssssnssessnssssnsesansans 393
117.6. AUDIOSWITCH «ccuurennnrennerrenereascrenserenserensessnssessssessssessnsssensessnssssnssssnssessnssssnsesansans 393
117.7. BACKPACKLIGHTS...ceuuuieeeeitenerenncrennerenserensessnssersssernssersnsssensessnssssnssssnssessnssssnsesansans 394
117.8. BODYIVIOTION ..ccuuieuniieneereenereancrenserenserensessnssersssssnssessnssssnsessnssssnssssnssessnssssnsesansans 394
3 2 TR XV 2 SRRt 395
117.10. FACEANIMATION ..ccuuuerrennnereennsesreenssesseenssessesnsssassesnssassesnsssssesnsssssennsssssennssessennnnanes 395
117.11. HEADANGLEieeeeeeirieenneertennseereenssesseenssessesnsssssesnsssssennsssessesnsssssennsssssennsssssennnnanes 396
117.12. LIFTHEIGHT ceeuuiiiteuneiriennneertennseeseenssesseenssessesnsssssesnsssssennsssssesnsssssennsssssennssssennnnanes 396
117.13. KEYFRAMES ..cuuuireeenereennseereenssssreenssessesnssessesnsssssesnssessennsssssesnsssssennsssssennssessennnnanes 397
117.14. PROCEDURALFACEcetveuueriennneerrennseeseenssesseenssessesnssessesnsssssesnsssssennsssssennssessennnnanes 398
117.15. RECORDHEADING ..ccuueriemnnerrennseereensseereenssessesnssessesnssessesnsssessesnssessennsssssennssessennnnanes 399
117.16. ROBOTAUDIOcceeuueerrennneerrennseeseenssessesnssessesnssassesnssessesnssessesnsssssennsssssennssesssnnnnanes 399
117.17. SPRITEBOX..ccuuciiiieuniiriennneeriennseereenssesseenssessesnssessesnssessesnsssssesnsssssesnsssssesnssssennnnanes 400
117.18. TURNTORECORDEDHEADINGceucetteuseeereenssesseenssessesnssesseenssessesnssessennssassennssessennnnanes 401
PART VI eeuuuiiiinnnieiiennnneiiennnasiisnnsasissnssssissassasissnsssssesnsssssesnsssssennsssssssnsssssonnssssssnnssssssnnssssss 403
HIGH LEVEL Al....uiiiiueeeiiennneeiiennsaeiisnsssiesnssesiesnssssiesnsssssesnsssssesnsssssssnssssssnnssssssnnssssssnnsnssss 403
CHAPTER 28......ccccuueeiiiunnaeiinnnseiennssesiennsseseennssssiennsssssensssssenssssssensssssssnsssssssnsssssssnssssssnns 405
BEHAVIORcccuuiiiiinnnneiiennnaeiirnnesiesnsnssissassesiesnssssiesnsssssesnsssssesnsssssssnssssssnnssssssnnssssssnnssssss 405
118. OVERVIEW ...uiiveeneiennssesiennsssssennssessensssssssnsssssssnsssssssnsssssssnsssssssnsssssssnssssssnnssssssnnses 405
119. ACTIONS AND BEHAVIORS ..cccuuiiieneniiiiennsisiienesssiiensssssmensssssrsnsssssssnssssssensssssssnsssssssnnses 405
119.1. ACTIONS AND THE ACTION QUEUES...cccuciiiemereeirennsssresnnssssssnsssssssnsssssssnsssssssnssssssnnsnsses 405
119.2. BEHAVIORS .ccuuuiiirnnsciirnnsscisenssscsesssssssesnsssssesnsssssesssssssssssssssssnsssssssnssssssnnssssssnnssssns 405
119.3. PATH PLANNING AND OTHER SMART THINGS TO SUPPORT US ..ccuuuiiiennscrennnsssnesnssssssnnennns 407
119.4. DECIDING ON THE BEHAVIOR TO USE .cceuuiiirnnnesiinnesasresnsssssennsssssesnsssssennsssssssnssssssnnsnnss 407
119.5. INITIATING THE BEHAVIOR.....cccuuueeriemnnerreennneeseenssessesnssessesnssessesnssessesnssessennssensennnnanes 407
119.6. IMANAGING THE ACTIVE AND PAUSED BEHAVIORSccceuuueerremnneereennneesennsessennnsensennnnenes 408
119.7. BEHAVIOR CONTROLLERSuctteesseereensseereensseesesnssessesnssessesnssassesnssessennssesssnnssesssnnnnanes 409
119.8. AUDIO EVENTS ...eeeeuueereennneereensseeseenssessesnssessesnssessesnssessssnssessesnssessennssesssnnssessennnsanes 409
CHAPTER 29.....ciiiiueeiiiiueeiiianeeienaseeeenasseseenssseseennsseseensssssesnssssseensssssesnsssssesnsssssennssassanns 410
EMOTION IMODELcccceuuueeiieunneeieennnaeieensnesseensneseeenssaseeenssaseennsssseesnssassennsssassssnssssssnnsnanse 410
120. OVERVIEWiteeueeerernnnessenaneesennsseseensssssesnsssesesnsssssssnsssssesnsssssssnssssssnnsssssennsssssennnes 410
121. EMOTIONS, AND STIMULATIONueeeeueueereensnereeensnessesnssessesnssessesnssessesnssessennssesssnnnsanes 410
121.1. STIMULATION ..uieeeunereennneereensseeseenssessesnssessesnssessesnssassssnsssssesnssessennssesssnnssansennnnanes 410
121.2. THE EMOTION MODEL ...ceeuueereennsereensseereenssessesnssessesnssassssnssessesnssessennssesssnnssansennnnanes 411
121.3. SIMPLE IMIOODS....ccuuiiiiimeniiiirnnnsciirnssesiesnssesiesnsssssesnsssssssnsssssesnsssssennssssssnnssssssnnsnssss 411
121.4. INTERACTION WITH THE BEHAVIOR ENGINE......ccccvueueiiirneneirinnnesiennnsesnennsnessennsnessennnnsnns 412
121.5. MOOD MANAGER CONFIGURATION ..ccuuuiiimmnnerrernnsesrernssessennsssssesnsssssesnsssssesnsssssennsnnes 412
121.6. MOOD CONFIGURATION......cetvmeueerernnseresnssssesnssassesnsssssesnsssssesnsssssennssssssnnsssssennnnnes 413
122. REFERENCES & RESOURCESivuueiieesiinescienssrensismnssssasssrssssresssssnssssnsssssssssssssssnssssnssss 414
CHAPTER 30.....ciieuuueiirneneeiennnneeienneeseennseeeennsssseennsssseennsssssennsssssensssssesnsssssssnsssssennassssanns 415
BEHAVIOR TREEccucciiumeneeiiennneeiernenesienaenesiennnneseennsneseennsseseennsssseesnsseseennsssseennsssseennsnasse 415
123. OVERVIEWiivueeeerennnnesrenmssesnennssessensssssesnsssssssnsssssssnsssssssnsssssssnsssssennsssssennssssnennnes 415

ANKI VECTOR - 2021.02.14 Xv

124. BEHAVIOR TREE.c..teuucteanerenserenseesnnsernssesessersnssssnsessnsssssnsessnsessassssnssssnsssssnssssnsesansans 415
L124.1. TIMERS..cutteuerennerenserensecrassernsscssssessssssensessnsssssssssnssessnsssensessnssssnssesassensnssssnsesansans 416
124.2. CONFIGURATION.c.ceuuereneereeneresncrensersnsssensessnssessssssnssessnsssensessnssassnssssnssensnssssnsesansans 417
124.3. BEHAVIOR NODEceuuuieeeereesnereancrensersnserensessnsssssssessssessnsssensessnssssnssssnssessnssssnsesansans 417
124.4. CONDITION NODES ..ccuuieeeeerenereancrensersasesensessnssessssssnssessnssssnsessnsassnssssnssessnsessnsesansans 418
125. A LOOK AT SOME INTERESTING BEHAVIORScccuuuirremenesrrennnessrennnessrenssssssenssssssensssssennnes 422
125.1. SHOVING STUFF OFF OF THE TABLE....cccuuttteussesreenssesseenssessesnsssssesnssessennsssssesnssessennnnanes 422
125.2. POUNCING eeeuueirrrennerrennseereenssssseenssessesnssessesnsssssesnssessesnsssssesnsssssesnsssssesnssssennnnanes 422
125.3. REACTING TO SOUNDceeuueereennsereenssesseenssessesnssessesnssessesnsssessesnssessennsssssennssessennnnanes 423
125.4. DANCING ..ceeeeueerrennneerrennseereenssessesnssessesnssessesnsssessesnsssessesnsssssesnssessennsssssesnssessennnnanes 424
126. USER CONDITIONS .ceuuerrennneereennseeseensssesesnssessesnssessesnsssssesnssessennsssssennssessennsssssennsnanes 427
127. REFERENCES & RESOURCESieuuiieeiinencienssrensissnssssnssssssssrsnssssnssssnssssnsssssnssssnsssansass 428
PART VI ..cuuiiiiieeiiiennneeiiennseeseennssreenssssseensssssennsssssennsssseesnsssseennsssssesnsssssennsssssennsssseennnsases 429
IMAINTENANCEccuciiiimuaeiiennneereennneseeensseseennssaseesnssassesnssassesnsssssssnsssssennsssssesnssssssnnnsanss 429
CHAPTER 31.....iiiieeeeiiiineeiinunnaeeennnnereennsseneennsseseennsssseenssssseenssssseenssssseensssssssnsssssennnsassnnnn 431
SETTINGS, PREFERENCES, FEATURES, AND STATISTICScccceeeiienniereennisiennnssrennssseennens 431
128. THE ARCHITECTURE .cccuuuiitennesermennsssssennsssssensssssssnsssssssnsssssssnsssssssnsssssssnsssssssnssssssannses 431
128.1. STORAGE LOCATION ...citieeuiiiirnnnseiirnnsseiisnnsssiesnsssssesnsssssssnsssssssnssssssnnsssssssnssssssnnssssns 431
129. WIFI CONFIGURATIONucttrueseerennsssesenssssssensssesssnsssssssnsssssssnsssssssnssssssnnssssssnnsssssannses 432
130. THE OWNER ACCOUNT INFORMATION ..cceuuiiiemensrrennssssmenssssssensssssssnsssssssnsssssssnsssssssnnses 432
131. PREFERENCES & ROBOT SETTINGS ...tveueueirinnnsssirsnnssssasnsssssesnsssssssnsssssssnsssssssnssssssnnssnes 433
131.1. ENUMERATIONS ..ceeuuuiiirnnssermennsscrssnsssssesnsssssesnsssssssssssssssnssssssssssssssnnsssssssnssssssnnsnsses 433
131.2. ROBOTSETTINGSCONFIG..cuuuiitrunserrransserssnnsscresnsssssssssssssssnsssssssnssssssnnsssssssnssssssnnsnssss 435
132. OWNER ENTITLEMENTS ...tteuenieremnnseeiennssessensssessensssssssnsssssssnsssssssnssssssnsssssssnnsssssannsas 436
133. VESTIGAL COZIMO SETTINGSiveeereirrenesssrrensssssrenssssssensssssssnsssssssnsssssssnsssssssnssssssannsns 436
134. FEATURE FLAGS .. ceeuuiiieenneeriennneereensseeseenssesseenssessesnssessesnssessennssessennssessennssesssnnnnanes 437
134.1. CONFIGURATION FILE ...eeeuuueereennneereensseeseenssessesnssessesnssassesnssessesnssessennssesssnnssassennnnanes 437
134.2. COMMUNICATION INTERFACE TO THE FEATURES ..cccuuereeennneeeeenssesseenssessennssessennssessennnnanes 437
135. ROBOT LIFETIME STATISTICS & EVENTS ...cieeuuueriiennnerreenneseeensessennssessennssessennssessennnnanes 438
136. REFERENCES & RESOURCEScccuueereennneereensnesseenssesseenssessesnssessesnssessesnssessennssesssnnnnanes 439
CHAPTER 32.....ciiicueiiiiinaeiiiuneeienasseeeenasseseennssaseennssaseennsssseenssssassensssssesnsssssssnssssssnnnsassanns 440
THE SOFTWARE UPDATE PROCESS......ccciteuuueiiienanaeieenasaseeenansssennsasesenssssssenasssssenssssasennnas 440
137. THE ARCHITECTURE .ecuuureennsereennneeseennssessenssssssenssssssensssssesnsssssssnsssssssnsssssssnnsssssennnes 440
137.1. BODY-BOARDcceeuuiiiimnnciriennneeiienneeseenssesseenssessesnssessesnssessesnssessennssessennssansennnnanes 440
137.2. THE COMPANION CUBE FIRMWAREceeteunneereennnesreensnessesnssessesnssessesnssessesnssessennnnanes 441
138. THE UPDATE FILE...cteuuuuiiienessersennssersennsssssensssssssnsssssssnsssssssnsssssssnsssssssnsssssssnsssssssnnnes 441
138.1. IMANIFEST.INIceuuiiienenerernnsaereenssacresnssassesnsssssesnssassesnsssssesnsssssennsssssennsssssennssessennsnanes 441
138.2. HOW TO DECRYPT THE OTA UPDATE ARCHIVE FILESceeueuerreennnesreennsessennsnessennsnsssennnnnes 443
139. THE UPDATE PROCESSiteeeeeerrennscrrennsessenssssssenssssssensssssssnsssssssnssssssensssssssnssssssennnns 443
139.1. STATUS DIRECTORY..c..uiieueseereensscrernssssrennsssssesnsssssesnsssssesnsssssennsssssennsssssennsssssennsnnns 444
130.2. PROCESS...cituuuerirnnsaerernnseerernssessesnsssssesnsssssesnsssssesnsssssssnsssssesnsssssesnsssssesnsssssennnnsnes 444
139.3. UPDATER CONFIGURATION....cceuuuetrrrmnsesrernnsessernssassesnsssssesnsssssesnsssssennssssssnnsssssennnnnes 446
139.4. IMAINTENANCE REBOOT ..ccuuuiiieeenecrernnseresnsssssesnsssssesnsssssesnsssssesnsssssennssssssnnsssssennsnsnes 447
140. RESOURCES & RESOURCES ..cuuuitueeirnessinnssrenssrssssssnssssssssrssssresssssnssssnssssssssrsnssssnssssnssss 448

ANKI VECTOR - 2021.02.14

xvi

CHAPTER 33....uuiiiiuueiiinnnnniiinnnnniiennneiiennseieinsseiiennsneieessseseessseseessssseessseseesssssneessssnenns 449

DIAGNOSTICS ...ieuiiuiieaiensionsiancrascrassonsrsssrnserassssssesssosssasssasssnssssssssssssssssssssssassssssasssnsssnssen 449
141. OVERVIEWuuueeenenessnssnsnnnes 449
141.1. THE SOFTWARE INVOLVED cccuuuueierireernnnnsssesessnesesnnsssssssssssssssnnssssssssssssssnnnsssssssssssssnnnns 449
142, SPECIAL SCREENS AND IVIODES ...cceuuuuueieiinirennnnnsssesssensesnnnssssssssssssssnnssssssssssssssnnnnsssnes 451
142.1. CUSTOMER CARE INFORMATION SCREEN.....c.0uesesesesssssssssssssssssssssssssssssssssnsssssssssssssnsnnes 451
142.2. VECTORS’ DEBUG SCREEN (TO GET INFO FOR USE WITH THE SDK)....cceueueiiienncrrirnncrrennnnenns 451
142.3. DISPLAYING FAULT CODES FOR ABNORMAL SYSTEM SERVICE EXIT / HANG .ceeeeeeunnnenneenenananns 451
142.4. RECOVERY IVIODEcceueeeeeeennsssnnnssssnssnsnnes 451
142.5. “FACTORY RESET” ..cuuiiiiueeeriennneeriennseereenssessesnssessesnssessesnsssssesnsssessennssessennsssssennnnanes 452
143. BACKPACK LIGHTS .eeeeeeeeeerereeeeeneeesesesesesesensessesesesesesssesessesesseererssesasessssssssssssssssnennnes 452
144. DIAGNOSTIC COMMANDS.....ceerererererereeereeeneaeseessesesesssesessseesseessssesensessresssesssssssssesenes 452
145. LOGS eieiereeereeeeeerereeeeeeerereseeeseeeeeeeeeeeeeeeneeeseeeeeseseeeeeeeeeereeeeeeereeeeeeeneeererereeerenenarnnes 452
145.1. GATHERING LOGS, ON DEMAND.......c0uuesesessnssnnee 453
145.2. VIC-LOGMGR-UPLOAD......eueeeeessnnnnnee 453
145.3. GATHERING LOGS, REGULARLYccceevmmesssecessneeennnnsssssssssesessnnnsssssssssssesnnnsssssssssssssnnnns 454
145.4. OPTING INTO (AND OUT OF) UPLOADING LOGS AND DAS EVENTSccoerererrmnnensccereneeennnes 454
145.5. KERNEL ACTIVITY TRACING (LTTNG) .ceeuurrremnuerrrennnerreennereeenseeesesnseessennssessesnssesssnnnnnes 455
145.6. FAULT CODE HANDLERccuuueeeesennsssnsnsses 455
145.7. CRASH LOGS c.cuuuuunnnnnennnnnnnnnnsnsssnsnss 457
146. CONSOLE FILTER ..evevesesesssssess 458
147. USAGE STUDIES AND PROFILING DATA ..cccuureueierernernnnnssssssssneesnnnsssssssssssssnnnsssssssssssssnnnns 460
147.1. EVENT TRACING ..ceuvuueeennsse 460
72y R 7 N 461
147.3. PROFILING AND LIBOSSTATE....cceetteeemmnnsssesessneeesnnsssssssssssssssnnnsssssssssssesnnnsssssssssssssnnnes 462
147.4. EXPERIMENTS ..evvveeeeeeennssssnsssnsssnnnnnee 464
148. REFERENCES & RESOURCES ...cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeseseeseeseseeeessesssessssssssssssnsssnes 465
REFERENCES & RESOURCESccccuitieuiienneienniiennsrennssrensssenssrsnsssenssssnssssnssssssssssnssssnsssansass 467
149. CREDITS..uuuuuesesesessnssnsssssssnnssnnnsnsnnnns 467
150. REFERENCE DOCUMENTATION AND RESOURCES «.cceveeeeeeeeeeeeeeeeeeeeerereeeseresesesssssessssessesenes 467
150.1. ANKleueeeueeeeennnsnsnsssnsnne 467
150.2. OTHER weveveeereeesensssnsssnsnssnnnnes 468
150.3. QUALCOMMcuuueeenenesnssnsssnssnsnnnnne 468
APPENDICES ...ccciiuiiuniianieniionsiansiansesscsssisssisssisssrsssrsssssssosstosstasssassssssssssssssssssnsssnsssnsssnssans 469
APPENDIX A..iciieiieiiusiunrasienrasiusrasiosrasiesrastosrastosrassassassosrastassassassassasrassassassossassassassassassasse 471
ABBREVIATIONS, ACRONYMS, GLOSSARYcccccteiiunianianianiasiasiassassassassassassossassassassassassanss 471
APPENDIX B..cioiirerererereneserenssenesess 477
TOOL CHAIN ..ceeiiiiiiieieerinereeeeeeeeeeeeeeeeeseseeesssesseeseessesesessssessssesesesssssssssssssssssssesssssssssssssssses 477
151. REFERENCES & RESOURCESivueeiiuesiinescrenssrensisrnssssasssrsnssresssssnssssnssssssssssnssssnssssnssss 479
APPENDIX € .uoveiererererenenenenensnessnsssnsssnsss 480
ALEXA MODULEScceiiiiiiiiiininininenissnsssness 480
APPENDIX D..overerererererenenenensnenssessssssssssssssssssssssssssssssnsss 482

ANKI VECTOR - 2021.02.14

xvii

FAULT AND STATUS CODESccccuuueiiiieeinnnnnnsniaiieesannnsssnseineeeessssssssseisseeessssssssssssneeessnnnes 482

152. REFERENCES AND RESOURCES ..veueteereenreesrensrassenssenssenssesssssssssesssesssessssssssssssssssnssensses 488
AP P EN D X E ..cueiiiiiiiiieieierieeetereasesessssesessssasessssssessssssessssssessssssessssssesessssessssssesassasassssasases 489
BODY BOARD CONNECTORS, PIN IMAP......cccictetiecereresseraseerasensasassesassssasssssssssssassesassasnsses 489
153. BODY-BOARD CONNECTORS ceeuetereresrensreesressrsssenseesssesssesssssssssesssessssssssssssssssssssnssensses 489
154. MICROCONTROLLER PIN IMIAPS AND RESOURCES ..ccuveeurenrrenreserssernssrasssnssesssssssssssnssensses 491
APPENDIX F .euiiuiieiiuureenreereesressrassesssesssasssssssassssssssssssssans 495
FILE SYSTEMcieuiieuieenieenrensresseessesssesssssssasssesssassssssssssassssssssssssssssssssssssssssssassssssasssnsssnsses 495
APPENDIX G.uieuiiuurrunrennreesressressrassesssasssssssnssssssssssssssans 499
BLUETOOTH LE SERVICES & CHARACTERISTICS....ccuiteutteeteessensrenssessrassrnsssasssassasssasssassensses 499
155. CUBE SERVICES.c.ureureeerseernsseessenssesssssssassenssssssesssssssassssssssssssssssssnsssnssensssnssansssnssanes 499
155.1. CUBE’S SERVICES .euureurreureenrenssensessersssssssesssssssssssssssssssnsssssssssssssssssssssssssssssssssnssensnen 500
156. VECTOR SERVICES ...reuureueeeneenssessssnssssssssssessesssssssassssssesssessssssssssssssssssssssssssssssnssenssen 500
156.1. VECTOR’S SERIAL SERVICE ceuureuureuerenereseresseesseessessssssssssenssessssssssssssssssssssssssssssssnssensnen 500
APPENDIX H...tuuiiuueiuureenrenireesressrassessassssssssssssssssssassssssssssssssans 501
SERVERS & DATA SCHEIVIAcuiiiiieiiieiieeeieeeteeeraserasssnssanssasssnsssasssnssssssasssasssnsssssssasssnssans 501
APPEN DX | ..uuiiuiiueiutentensiensronssassesseesssssssssssssssasssassssssssssasssssssasssnssssssssssssssnsssssssassssssans 503
FEATURES .. .uuiiuiiuiieieeniensieesraesenssenssenssssesnssrasssassasssssssnssssssssssassssssssssssssssssssssnsssnsssnsssnssen 503
AP PEN DX J . euiiiiiuiiuientensieesransraesenseenssssssssssssssasssassssssasssasssssssasssnssssssnsssssssnsssssssasssnssans 507
PHRASES AND THEIR INTENT .. .iuiuietetetetereceseceraresesasesassssssesssssesesosesssssssssssssasasasassssssssssasse 507
APPENDIX K .uuiuuituiiutenntensiensraesrassensessasssssssassssssans 512
EIMOTION EVENT S, uuituuituiiuutiueereserasseussnsernsssssssassssssssssassssssssssssssssssssssssssssssassssssasssnsssnssen 512
APPENDIX L euiuuiiuiuunienntensteesressrassesseesssssssssssssssssssassssssssssssssssssssssnssssssssssssssnsssssssassssssans 514
DAS TRACKED EVENTS AND STATISTICS ...ccceueececeteterecesessseresesesesosesssssssasssssasasassssssssssssass 514
157. DAS TRACKED EVENTS AND STATISTICS tueueurererererereresasecececacacacasasasasasssssssssesasesesasesases 514
157.1. BASICINFORMATION c..eeureerreusrensesserssessssesssnssensnen 514
157.2. POWER MANAGEMENT EVENTS AND STATISTICS u.veuvreereeseensrensrencrescrssesssssnsssnssssssnssensnes 515
157.3. SENSOR STATISTICS AND EVENTS ..veuerererenreenreereesressenssenssensssssssssrssssssssssssssssssssssensnes 517
157.4. IMOTOR STATISTICS AND EVENTS cuuveuereuerenreenreerensressenssenssenssssssssssssssssssssssnsssssssssensnes 518
157.5. COMMUNICATION RELATED EVENTS POSTED TO DASeeuieeirenirenirenereneresseesensssesenssennnes 518
157.6. SETTINGS AND PREFERENCES EVENTS ..veuvteureenreenreesressenssenssensrssersserssesssssssssnssssssnssensnes 520
157.7. UPDATE-RELATED EVENTS POSTED TO DAS ...c.reureeireerennrenrensreseresersserssssssssssssssssssensnes 521
157.8. VISION & NAVIGATION RELATED EVENTS POSTED TO DASeuureuirenerenernneensenssncennnennnes 521
157.9. BEHAVIOUR, FEATURE, MOOD, AND ENGINE RELATED EVENTS POSTED TO DAS......ccccevenneen 523
AP PEND I M. ciiiiiiiietieieierieiateressesersesesessssasessssasessssssessssasessssssessssssesssssssssssssesessnsassssssases 524
PLED .. iuuiiuieueiueerunsrussensseessanssasssassssssssssssssssssssssassasssssssnssssssssssnsssssssssssssssssssassnsssnsssnsssnssen 524
057,10, SALES...ciuuitureuireeireetreeeraneensrensrsserssersssssssesssasssasssnsssnssenssessrassraserssesnssnnssnsssnsssnnen 525
157.11. RESOURCES teuteuureerreerreneraseraseessssserssersssssssesssssssasssnsssnssasssasssasssssesssessssssssnsssnsssnsen 525

ANKI VECTOR - 2021.02.14

xviii

Preface

The Anki Vector is a charming little robot — cute, playful, with a slightly mischievous character. It
is everything | ever wanted to create in a bot. Sadly, Anki went defunct shortly after its release.
Almost a year later Anki’s software and designs were purchased by Digital Dream Labs, who are
presently developing plans for future support and development.

This book is my attempt to understand the Anki Vector and its construction; it is not authoratative
and is based on speculation. Speculation informed by Anki’s SDKs, blog posts, patents and FCC
filings; by articles about Anki, presentations by Anki employees; by PCB photos, and hardware
teardowns from others; by a team of people (Project Victor) analyzing the released software; and
by experience with the parts, and the functional areas. When you do find errors (and typos), please
contact me (my email is on the second page.)

1. ORGANIZATION OF THIS DOCUMENT

= PRerACE. This introduction describes the organization of the chapters and appendices.

= CHAPTER 1: OVERVIEW OF VECTOR’S ARCHITECTURE. Introduces the overall design of the
Anki Vector robot.

PART I: ELECTRICAL DESIGN. This part provides an overview of the design of the electronics in
Vector and his accessories:

= CHAPTER 2: VECTOR’S ELECTRONICS DESIGN. An overview of the Vector’s electronics design.

= CHAPTER 3: HEAD-BOARD ELECTRONICS DESIGN. A detailed look at the electronics design of
Vector’s main processing board.

= CHAPTER 4: BACKPACK & BODY-BOARD ELECTRONICS DESIGN. A detailed look at the
electronics design of Vector’s backpack and motor driver boards.

= CHAPTER 5: ACCESSORY ELECTRONICS DESIGN. A look at the electronics design of Vector’s
accessories.

PART II: BAsiC OPERATION. This part provides an overview of Vector’s software design.
= CHAPTER 6: ARCHITECTURE. A detailed look at Vector’s overall software architecture.
= CHAPTER 7: STARTUP. A detailed look at Vector’s startup, and shutdown processes

= CHAPTER 8: POWER MANAGEMENT. A detailed look at Vector’s architecture for battery
monitoring, changing and other power management.

= CHAPTER 9: BUTTON & ToucH INPUT AND OuTPUT LEDs. A look at the push button, touch
sensing, surface proximity sensors, time of flight proximity sensing, and backpack LEDs.

= CHAPTER 10: INERTIAL MOTION SENSING

PART Ill: COMMUNICATION. This part provides details of Vector’s communication protocols. These
chapters describe structure communication, the information that is exchange, its encoding, and the
sequences needed to accomplish tasks. Other chapters will delve into the functional design that the
communication provides interface to.

ANKI VECTOR - 2021.02.14

CHAPTER 11: COMMUNICATION. A look at Vector’s communication stack.

CHAPTER 12: COMMUNICATION WITH THE BoDY-BOARD. The protocol that the body-board
responds to.

CHAPTER 13: VECTOR’S BLUETOOTH LE CoMMUNICATION PrROTOCOL. The Bluetooth LE
protocol that VVector responds to.

CHAPTER 14: CuBE’S BLUETOOTH LE COMMUNICATION PROTOCOL. The Bluetooth LE
protocol that the cube responds to.

CHAPTER 15: SDK ProTOCcOL. The HTTPS protocol that Vector responds to.

CHAPTER 16: WEB-VISUALIZATION PROTOCOL. The web-sockets protocol(s) that Vector
provides for debugging in development builds.

CHAPTER 17: CLouD. A look at how Vector syncs with remote services.

PART IVV: ADVANCED FUNCTIONS. This part describes items that are Vector’s primary function.

CHAPTER 18: AuDIO INPUT. A look at Vector’s ability to hear spoken commands, and ambient
sounds.

CHAPTER 19: IMAGE PROCESSING. Vector vision system is sophisticated, with the ability to
recognize marker, faces, and objects; to take photographs, and acts as a key part of the
navigation system.

CHAPTER 20: MAPPING & NAVIGATION. A look at Vector’s mapping and navigation systems.

CHAPTER 21: ACCESSORIES. A look at Vector’s home (charging station), companion cube and
custom objects.

PART V: ANIMATION. Vector uses animations — “sequence[s] of highly coordinated movements,
faces, lights, and sounds” — “to demonstrate an emotion or reaction.” This part describes how the
animation system works.

CHAPTER 22: ANIMATION. An overview how Vector’s scripted animations represents the
“movements, faces, lights and sounds;” and how they are coordinated.

CHAPTER 23: LIGHT ANIMATION. An overview of the backpack and cube light animation.

CHAPTER 24: DIsPLAY & PROCEDURAL FACE. Vector displays a face to convey his mood and
helps forms an emotional connection with his human.

CHAPTER 25: AUDIO PRODUCTION. A look at Vector’s sound effects and how he speaks
CHAPTER 26: MOTION CONTROL. At look at how Vector’s moves.

CHAPTER 27: ANIMATION FILE FORMAT. The format of Vector’s binary animation file

PART VI: HIGH-LEVEL Al.

CHAPTER 28: BEHAVIOR. A look at VVectors behaviors, and emotions.

CHAPTER 29: EMOTION/MOOD MODEL. At Vector’s emotions, where they come from and how
they impact the sounds and choices he makes.

CHAPTER 30: BEHAVIOR TREES. A look at how the behaviors are selected and their settings.

ANKI VECTOR - 2021.02.14

PART VII: MAINTENANCE. This part describes items that are not Vector’s primary function; they
are practical items to support Vector’s operation.

= CHAPTER 31: SETTINGS, PREFERENCES, FEATURES AND STATISTICS. A look at how Vector
syncs with remote servers

= CHAPTER 32: SOFTWARE UPDATES. How Vector’s software updates are applied.

= CHAPTER 33: DIAGNOSTICS. The diagnostic support built into Vector, including logging and
usage statistics.

REFERENCES AND RESOURCES. This provides further reading and referenced documents.

APPENDICES: The appendices provide extra material supplemental to the main narrative. These
include tables of information, numbers and keys.

= APPENDIX A: ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of
terms, abbreviations, and acronyms.

= ApPENDIX B: TooL CHAIN. This appendix lists the tools known or suspected to have been
used by Anki to create, and customize the Vector, and for the servers. Tools that can be used
to analyze Vector

= APPENDIX C: ALEXA MODULES. This appendix describes the modules used by the Alexa client

= APPENDIX D: FAULT AND STATUS CoDES. This appendix provides describes the system fault
codes, and update status codes.

= APPENDIX E: BoDY-BOARD CONNECTOR AND PIN MAP. This appendix lists the electrical
connections on the body-board.

= AppeNDIX F: FILE SYSTEM. This appendix lists the key files that are baked into the system.

= APPENDIX G: BLUETOOTH LE SERVICES & CHARACTERISTICS. This appendix provides
information on the Bluetooth LE interface GUIDs to the companion Cube, and to Anki
Vector.

= APPENDIX H: SERVERS. This appendix provides the servers that the Anki VVector and App
contacts.

= APPENDIX |: FEATURES. This appendix enumerates the Vector OS “features” that can be
enabled and disabled; and the Al behavior’s called “features.”

= APPENDIX J: PHRASES. This appendix reproduces the phrases that Vector keys off of.

= APPENDIX K: EMOTION EVENTS. This appendix provides a list of the emotion events that
Vector internally responds to.

= APPENDIX L: DAS EVENTS. This appendix describes the identified DAS events

= APPENDIX M: PLEO. This appendix gives a brief overview of the Pleo animatronic dinosaur,
an antecedent with many similarities.

Note: I use many diagrams from Cozmo literature. They re close enough

1.1. ORDER OF DEVELOPMENT

A word on the order of development; the chapters are grouped in sections of related levels of
functionality and (usually) abstraction.

ANKI VECTOR - 2021.02.14

Most chapters will description a vertical slice or stack of the software. The higher levels will
discuss features and interactions with other subsystems that have not been discussed in detail yet.
For instance, the section on the basic operation of Vectors hardware includes layers that link to the
behavior and communication well ahead of those portions. Just assume that you’ll have to flip
forward and backward from time to time.

The communication interface has its own section with the relevant interactions, commands,
structures and so on.

1.2. VERSION(S)

The software analyzed here is mostly version 1.5 and 1.6 of Vector’s production software, as well
as some of the development version of 1.7. There are incremental differences with each version; |
have not always described the places that only apply to a specific version.

= Version 1.6 was the last release to customers as Anki ceased operation. This release
includes more software elements that are unused, but are nonetheless telling.

= Version 1.7 was completed and released by Digital Dreams Labs.

1.3. CUSTOMIZATION AND PATCHING

What can be customized — or patched — in Vector?

= The software in the main processor may be customizable; that will be discussed in many
areas of the rest of the document

= The body-board firmware is field updatable, and will take expertise to construct updates.

= The cube firmware can be updated, but that appears to be the hardest to change, and not
likely to be useful.

1.4. CODE NAMES OR VECTOR VS VICTOR
Vector’s working name during development — aka code name — was Victor. Early products used
ad hoc code names. After the development of Cozmo, Anki used NATO phonetic alphabet code
words for their products:

Table 1: Anki code
names

Product Code Word Description

Bingo A larger, two-wheeled self-balancing robot that was more dog-
like in inspiration. It would have a larger battery, depth-
sensing camera (instead of time of flight sensing), could
traverse floors, etc. The software was based on Vector’s.

The large version (called Big Bingo) was requested by the
investors for use in security related applications. The smaller,
home unit is referred to as Mini Bingo, and initial prototypes
were ~15 cm tall.

Note: Bravo is the correct NATO alphabet codeword, so that
rule of thumb isn’t 100%

Cozmo Cozmo Cozmo a predecessor to Vector. Named after the pet
Pomeranian dog (Cosmo) of Patrick DeNeale, an early
employee.

Fast and Foxtrot Part of the Anki Drive car racing products.

Furious

Overdrive Overdrive Part of the Anki Drive car racing products.

Drive Rush Hour Part of the Anki Drive car racing products.

ANKI VECTOR - 2021.02.14 4

Vector Victor The name Vector was selected both for its similarity to Victor,
its uniqueness (e.g., not already trademarked), and working
well as a trigger word across many accents and locales.

Whiskey This was intended to be a lower cost Cozmo, with less
memory, less expensive plastics, only a single cube.

ANKI VECTOR - 2021.02.14 5

CHAPTER 1

Overview of Vector

Anki Vector is a cute, palm-sized robot; a buddy with a playful, slightly mischievous character.
This chapter provides an overview of Vector:

= QOverview of Vector and his features
= Privacy and Security
= Ancestry: Cozmo

= Alexa Built-in

2. OVERVIEW

Vector is an emotionally expressive, life-like, animatronic robot pet that people connect with and
feel affection for.

Speaker for sounds and Figure 1: Vector’s

Tiltable head, a display speech main features

for facial expression,
and camera AN

A touch sensor, button,
segmented light indicator,
and microphones

Time of flight sensor to
motors on tracks

\
sense environment
Sensors to detect cliff, and

charging pads

2.1, COMPELLING CHARACTER

Anki’s hallmark is that creating compelling, life-like robot characters, with film-style animations.
What does that mean?

= Acharacter has identifiable traits, and moods, something that we can empathize with.

= A compelling character tries but doesn’t always succeed. As Pixar said, “we admire a
character trying more than for their successes”

= He can sense the environment and has some awareness of what they and others are doing...

= He knows that he succeeded — or didn’t — and that affects his mood.. So a character has
moods, emotions and that affects what it does and how it does it.

ANKI VECTOR - 2021.02.14 6

= Aliving thing is never entirely at rest or silent; even when sleeping it moves a little and
makes little sounds

= Movements vary and are never quite the same. When they look repetitive, they break the
illusion. This is true for choices, reactions and other behaviors too.

= There are little motions, sounds and body’s affect that anticipate what a character is
thinking and going to do

Vector has a wide variety of behaviors, little motions (animations), and even some emotions that
give him a personality. He can express emotions thru expressive eyes (on an LCD display), raising
and lower his head, sounds, wiggling his body (by using his treads), or lifting his arms... or
shaking them. He can sense surrounding environment, interact and respond to it. He can
recognize his name?, follow the gaze of a person looking at him, and seek petting.2

2.2. FEATURES

Although cute, small, and affordable,® Vector’s design is structured like many other robots.
He has a set of operator inputs:

= Atouch sensor is used detect petting

= Internal microphone(s) to listen, hear commands and sense the ambient activity level

= Abutton that is used to turn Vector on, to cause him to listen — or to be quiet (and not
listen), to reset him (wiping out his robot-specific information).

= He can detect his arms and head being raised or lowered.
He has a set of indicators/annunciators:

= Segmented lights on Vector’s backpack are used to indicate when he is on, needs the
charger, has heard the wake word, is talking to the Cloud, can’t detect WiFi, is booting, is
resetting (wiping out his personality and robot-specific information).

= An LCD display, primarily to show eyes of a face. Robot eyes were Anki’s strongest piece
of imagery. Vector smiles and shows a range of expressions with his eyes.

= Speaker for cute sounds and speech synthesis
He has other means to express affect as well:

= His head can be tilted up and down to represent sadness, happiness, etc.

= Hisarms flail to represent frustration

= He can use his treads to shake or wiggle, usually to express happiness or embarrassment
He has environmental sensors:

= Acamerais used to map the area, detect and identify objects and faces.

= Fist-bump and being lifted can be detected using an internal inertial measurement unit
(IMU)

= A forward facing “time of flight” proximity sensor aids in mapping and object avoidance

! Vector can’t be individually named.
2 Admittedly this is a bit hit and miss.
® Although priced as an expensive toy, this feature set in a robot is usually an order of magnitude more expensive, with less quality.

ANKI VECTOR - 2021.02.14

= Ground sensing proximity sensors that are used to detect cliffs at the edge of his area and
to following lines when he is reversing onto his charger.

His internal sensing includes:
= Battery voltage, charging; charging temperature
= |IMU for orientation and position (6-axis) tracking
= Encoders provide feedback on motor rotation
His other articulation & actuators are:
= Vector drives using two independent treads to do skid-steering

= Using his arms Vector can lift or flip a cube; he can pop a wheelie, or lift himself over a
small obstacle.

= Vector can raise and lower his head

Communication (other than user facing):
= Communication with the external world is thru WiFi and Bluetooth LE.
= Internally RS-232 (CMOS levels) and USB

Motion control

= Atthe lowest level can control each of the motors speed, degree of rotation, etc. This
allows Vector to make quick actions.

= Combined with the internal sensing, he can drive in a straight line and turn very tightly.
= Driving is done using a skid-steering, kinematic model

= Todo all this, the motion control takes in feedback from the motor encoder, IMU-
gyroscope. May also use the image processing for SLAM-based orientation and
movement.

Guidance, path planning

= Vector plans a route to his goals — if he knows where his goal is — along a path free of
obstacles; he adapts, moving around in changing conditions.

= A* Rapidly-Expanding Random Tree (RRT), D*-lite
= Paths are represented as arcs, line segments, and turn points
Mapping and Navigation:

= Maps are built using simultaneous location and mapping (SLAM) algorithms, using the
camera and IMU gyroscope movement tracking, time of flight sensor to measure distances,
and particle system algorithms to fill in the gaps.

= The maps are represented uses quad-tree (position, pose)
Behaviour system:

= Variety of behaviors animations

= Goals, linking up to the guidance system to accomplish them

= Asimple emotion model to drive selection of behaviours

ANKI VECTOR - 2021.02.14

Emotion model. Dimensions to emotional state:
= Happy (also referred to as his default state)
= Confident
= Social
= Stimulated

Vision. This is one of Anki’s hallmarks: they used vision where others used beacons. For instance,
iRobot has a set of IR beacons to keep the robots of out areas, and to guide it to the dock. Mint has
an IR beacon that the mint robots use to navigate and drive in straight lines. Although Vector’s
companion cube is powered, this is not used for localization. It has markers that are visually
recognized by Vector.

= Illumination sensing

= Motion sensing

= Links to Navigation system for mapping, (SLAM etc)
= Recognizing marker symbols in his environment

= Detecting faces and gaze detection allows him to maintain eye contact

3. PRIVACY AND SECURITY

Vector’s design includes a well thought out system to protect privacy. This approach protects the
following from strangers gaining access to:

= Photos taken by Vector

= The image stream from the camera

= The audio stream from the microphone — if it had been finished being implemented
= Information about the owner

= Control of the robot’s movement, speech & sound, display, etc.

Vector’s software is protected from being altered in a way that would impair its ability to secure
the above.

4. cozMo

We shouldn't discuss Vector without mentioning the prior generation. Vector’s body is based
heavily on Cozmo; the mechanical refinements and differences are relatively small. Vector’s
software architecture also borrows from Cozmo and extends it greatly. Many of Vector’s
behaviours, senses, and functions were first implemented in Cozmo (and/or in the smartphone
application). One notable difference is that Cozmo did not include a microphone.

Cozmo includes a wide variety of games, behaviours, and ~940 animation scripts. Cozmo’s engine
is reported to be “about 1.8 million lines of code, the Al, computer vision, path planning,
everything.”* This number should be discounted somewhat, as it likely includes many large 3rd
party modules... Nonetheless, it represents the scale of work to migrate Cozmo’s code base for
reuse in Vector.

4 https://www.reddit.com/r/IAmA/comments/7c2b5k/were_the founders_of anki_a_robotics_and_ai/

ANKI VECTOR - 2021.02.14

https://www.reddit.com/r/IAmA/comments/7c2b5k/were_the_founders_of_anki_a_robotics_and_ai/

Not all of Cozmo’s functionality was ported to Vector at one time. Instead, key features and
behaviours were incrementally brought to Vector in its regular software updates. It is likely the
intent was to follow-up with much more in future updates, piling on features until September and
then switch to a focus on bug fixes and stability for the upcoming Christmas sales. This was,
perhaps, a faster schedule than they were able to deliver.

5. ALEXA INTEGRATION

Vector includes Amazon Alexa functionality, but it is not intimately integrated. Vector only acts
like an Echo Dot, as pass thru for Alexa service. By using the key word “Alexa,” Vector will
suppress his activity, face and speech, and the Alexa functionality takes over. Vector has no
awareness of Alexa’s to-do list, reminders, messages, alarms, notifications, question-and-answers,
and vice-versa; nor can he react to them.

The most likely reason for including Alexa is the times: everything had to include Alexa to be hip,
or there would be great outcry. Including Alexa may have also been intended to provide
functionality and features that Anki couldn’t, to gain experience with the features that Amazon
provides, and (possibly) with the intent to more tightly integrate those features into Anki products
while differentiating themselves in other areas.

Alexa clearly took a lot of effort to integrate, and a lot of resources:

“[Alexa Voice Service] solutions for Alexa Built-in products required expensive
application processor-based devices with >50MB memory running on Linux or Android”®

Alexa’s software resources consume as much space as Vector’s main software. And the software
is not power efficient. Even casual use of Alexa noticeably reduces battery life, and (anecdotally)
increases the processor temperature.

See Appendix C for a list for a list of the Alexa modules.

® https://aws.amazon.com/blogs/iot/introducing-alexa-voice-service-integration-for-aws-iot-core/
Alexa’s SDK and services have continued to evolve. New Alexa SDKSs allow simpler processors and smaller code by acting as little
more than a remote microphone.

ANKI VECTOR - 2021.02.14 10

https://aws.amazon.com/blogs/iot/introducing-alexa-voice-service-integration-for-aws-iot-core/

PART I

Electronics Design

This part provides an overview of the design of the electronics in Vector and his accessories

VECTOR’S ELECTRONICS DESIGN. An overview of the Vector’s electronics design.

HEAD-BOARD ELECTRONICS DESIGN. A detailed look at the electronics design of Vector’s
main processing board.

BACKPACK & BoDY-BoARD ELECTRONICS DESIGN. A detailed look at the electronics design of

Vector’s backpack and motor driver boards.

AccEssORY ELECTRICAL DESIGN. A look at the electrical design of Vectors accessories.

Note: In previous versions called the circuit board in the bottom half the “base-board ”. It is now
referred to as “body-board” to match Anki’s naming

ANKI VECTOR - 2021.02.14

11

[This page is intentionally left blank for purposes of double-sided printing]

ANKI VECTOR - 2021.02.14 12

CHAPTER 2

Electronics Design

Description

This chapter describes the design of Vector’s electronics:
= Design Overview, outlining the main subsystems
= Power distribution

Subsequent chapters will examine in detail the design of the subsystems

6. DESIGN OVERVIEW

Vector’s design includes numerous features to sense and interact with his environment, other to
interact with people and express emotion and behaviour.

Speaker for sounds and

LCD display for facial

expression, and HD
camera \ » Backpack with button, touch

sensor, 4 microphones, and
4 segment RGB lights

2 N Head and arm lift motors

with position encoders

Two motors with encoders
and tracks

Time of flight sensor to
sense environment

Motor control, battery & charger;
surface proximity sensors to
detect cliff; charging pads

ANKI VECTOR - 2021.02.14

Figure 2: Vector's
speech main elements

13

Vector’s functional elements are:

Element Description

backpack The top of Vector, where he has a button, segmented lights, and a touch sensor.

battery An internal battery pack is used as Vector’s source of energy.

button A momentary push button is used to turn Vector on, to cause him to listen — or to be quiet (and
not listen) — to reset him (wiping out his personality and robot-specific information).

camera Vector uses an HD camera to visualize his environment, and recognize his human companions.

charging pad

LCD display

microphones

motors & encoders

segmented RGB
lights

speaker

surface proximity
sensors

time of flight sensor

touch sensor

Two pads on the bottom are used to replenish the energy in the battery pack from the dock.
The pads also serve as the communication interface during some manufacturing test steps.

An IPS LCD, with an active area is 23.2mm x 12.1mm. It has a resolution of 184 x 96 pixels,
with RGB565 color.

There are 4 internal far-field microphone(s) to listen to commands and ambient activity level.
Employs beam forming to localize sounds.

There are four motors each with single-step optical encoders to measure their position and
approximate speed. One motor controls the tilt of the head assembly. Another controls the lift
of his arms. Two are used to drive him in a skid-steering fashion.

There are 4 LEDs used to indicate when he is on, needs the charger, has heard the wake word,
is talking to the Cloud, can’t detect WiFi, is booting, is resetting (wiping out his robot-specific
information).

A speaker is used to play sounds, and for speech synthesis

4 infrared proximity sensors are used to detect the surface beneath Vector — and to detect drop
offs (“cliffs”) at the edge of his driving area, and to follow lines.

A time of flight sensor is used to aid in mapping (by measuring distances) and object
avoidance.

A touch allows Vector to detect petting and other attention.

ANKI VECTOR

Table 2: Vector’s main
elements

- 2021.02.14 14

Vector has 6 circuit boards

Figure 3: Circuit
Head Board board topology
Time of Backpack
Flight sensor ETHERE Board
Surface
Proximity Motors
Sensors
Shaft
Encoders

The main two boards are the head-board where the major of Vector’s processing occurs, and the
body-board, which drives the motors and connects to the other boards.

Figure 4: Vector’s
main microcontroller
circuit boards

Main circuit board, LCD
display for facial expression,
and HD camera

Body board for controlling
motors, charging battery;
proximity sensors to detect cliff;
charging pads

The table below summarizes the boards:

Table 3: Vector's

Circuit Board Description o
circuit boards

backpack board The backpack board has 4 RGB LEDs, 4 MEMS microphones, a touch wire, and a button.
This board connects to the body-board.

body-board The body board drives the motors, provides power management, and the battery charger. It has
two photo-interrupters — one for each of the tread motors — to encode the speed of movement.

encoder-boards The two encoder boards have dual-channel photo-interrupters each. These are used to monitor
the position and direction of movement of the arms and head, either as driven by the motor, or
by a person manipulating them.

head-board The head-board includes the main processor, flash & RAM memory storage, an IMU, and a
PMIC. The WiFi and Bluetooth LE are built into the processor. The camera and LCD are
attached to the board, thru a flex tape. The speaker is also attached to this board.

time of flight sensor The time of flight sensor is on a separate board, allowing it to be mounted in Vector’s front.
board

ANKI VECTOR - 2021.02.14 15

6.1. POWER SOURCE AND DISTRIBUTION TREE
Vector is powered by a rechargeable battery pack, and the energy is distributed by the body-board:

Figure 5: Power
Batter | | | MP2617B Backpack distribution
y Charger L Board
/| \
3.5V -4.2v Head Board
Charging Pads H
. To motors
Motor Driver >
Body Board

When the charging pads are energized — when Vector is in the charging dock — the system is
powered by the external power source.

Excessive current demand — such as from a stalled motor — can trigger a system brown-out and
shutdown.

6.1.1 Battery
Vector battery is a single-cell 3.7v 320mAh “toy safe” lithium-ion polymer battery. The battery battery
is connected to the body-board. The pack is not a “smart” battery — it only has positive and
negative leads, lacking an onboard temperature sensor or battery management system (BMS).

Battery heat is the most significant source of battery “aging” — its effective service life. High
recharge rates internally heat the cells, causing them to deteriorate. Vector’s battery thinness gives
it a high surface area to volume ratio allowing it shed heat much faster, greatly reducing the
internal heating from charging and heavy loads. The battery is physically separated from the body-
board, isolating it from the heat generated in the charging, power distribution and motor driver
circuits. This increases the battery service life.

Vector takes care to thermally manage the battery, to promote a longer service life. The software
monitors the body board temperature (as a proxy of the battery temperature). When the
temperature gets above one or more thresholds (e.g. 50C), Vector can slow down or stops his
activities and charging to allow the battery cool.

The battery has a low internal resistance. This reduces the internal heating and allowing it to
usefully deliver higher currents without resulting in a brown-out. “Vector has brief but high (2A)
peak currents when doing certain computations or flipping himself with his lift.”

Anki engineers certainly desired easy-to-replace batteries, and larger batteries. But there were
challenges. Battery replacement requires more parts and design features. A larger battery would
allow longer play time between charges, but they often have higher internal resistance (thus more
prone to brown out). So it would have taken finding one with good thermal characteristics (i.e.
didn’t get too hot), was toy safe despite holding more charge and chemicals, and so on. Ultimately
schedule prevented finding a suitable larger battery.

ANKI VECTOR - 2021.02.14 16

6.1.2 Battery management
The MP2617B is a central element to managing the battery. It acts as a battery charger, a power
switch and power converter for the whole system.

= When Vector is going into an off state — such as running too low on power, going into a
ship state before first use, or has been turned off by a human companion — the MP2617B
charger and power converted can be signaled to turn off.

= When Vector is turned off the boards are not energized. The exception is that the high side
of the push button is connected to the battery. When closed, the signals the MP2617B to
connect the battery to the rest of the system, powering it up.

= The MP2617B is also responsible for charging the battery. There are two pads that mate
the dock to supply energy to charge the battery.

In many rechargeable lithium ion battery systems there is a coulomb counter to track the state of
charge. Vector does not have one. The need for recharge is triggered solely on the battery voltage.

6.2. MANUFACTURING TEST SUPPORT

Vector has an interface for test and manufacturing. The charging pads allow limited
communication with the software. This supports DVT testing, manufacturing tests, as well as
entering the serial number and other per unit information. This access is removed after
manufacturing test.

7. REFERENCES & RESOURCES

Anki, Lithium single-cell battery data sheet
https://support.anki.com/hc/article_attachments/360018003653/Material%20Safety%20Data
%20Sheet April%202018.pdf

ANKI VECTOR - 2021.02.14 17

https://support.anki.com/hc/article_attachments/360018003653/Material%20Safety%20Data%20Sheet_April%202018.pdf
https://support.anki.com/hc/article_attachments/360018003653/Material%20Safety%20Data%20Sheet_April%202018.pdf

CHAPTER 3

Head-board

Electronics Design

Description

This chapter describes the electronic design of Vector’s head-board:

= Detailed design of the head-board

8. THE HEAD-BOARD (THE MAIN PROCESSOR BOARD)

The head-board handles the display, playing sounds, communication, and all of Vector’s real

processing. It is powered by a quad-core Arm-A7 Qualcomm APQ8009 microprocessor. The
processor also connects to Bluetooth LE and WiFi transceivers, an HD camera, LCD display,

speakers and an IMU.

Figure 6: Head-board

Speaker

Vpwr PM8916 block diagram
PMIC , LCD
’ backlight
Flash/RAM
Body-Board
Communication »
am UART O
5 SPI1 LCD
Console UART UART =
APQ8009 Microprocessor
uUsB

Bluetooth

X || =

Camera

IMU

ANKI VECTOR - 2021.02.14 18

The head-board’s functional elements are:

Table 4: The head-

Element ”
boards functional

Description

Bluetooth LE
transceiver

camera

flash/RAM (eMMC)

inertial
measurement unit
(IMU)

LCD backlight
LCD display

microprocessor

power management
IC (PMIC)

speaker

WiFi transceiver

A Bluetooth LE transceiver is built into the package elements

Vector uses a 720P camera to visualize his environment and recognize his human companions.

Flash and RAM are provided by single external package, a Kingston 04EMCP04-NL3DM627
mixed memory chip with 4 GB flash and 512MB RAM.

The headboard includes a 6-axis IMU — gyroscope and accelerometer — used for navigation and
motion control.
There are two LEDs used to illuminate the LCD display.

An IPS LCD, with an active area is 23.2mm x 12.1mm. It has a resolution of 184 x 96 pixels,
with RGB565 color.

The head-board is based on a Qualcomm APQ8009 (Snapdragon 212). The processor is a
quad-core Arm A7 (32-bit) CPU.

The PM8916 power management IC provides voltage regulation for the processor, flash/RAM
and other parts; it also provides audio out to the speaker and controls the LCD backlight.

A speaker is used to play sounds, and for speech synthesis

An 802.11AC WiFi transceiver is built into the processor package

8.1.

8.2.

THE APQ8009 PROCESSOR

The head-board is based on the Qualcomm “Snapdragon 212” APQ8009 SOC. It is a quad-core
processor; each core is a 32-bit ARM Cortex A7. It also includes a DSP (“Hexagon 536”), and
GPU (Adreno 304); these are not used by the software. It also includes WiFi and Bluetooth LE
transceivers. The processor has interfaces to external memory, for the camera (using MIPI), the
display, and the audio playback.

The APQ8009 processor is a sibling to the MSM8909 processor employed in cell phones, where
APQ is short for “Application Processor Qualcomm” and MSM is short for “Mobile Station
Modem.” The difference is that the later includes some form of modem, such as HPSA, CDMA,
or LTE. Both designators are used in software code-bases employed by Vector. The most likely
reason is the naming of registers, drivers, and other useful software didn't carefully limit the use of
MSMxxxx references to just the processors with modems.

The flash & RAM are connected to the processor on SDHC1. The device tree file shows that
during development Vector’s also supported an SD card slot on SDHC2.

The processor dynamically adjusts its clock frequency, within an allowed region. The processor
can be configured to limit its speed.

SPEAKER

The speaker is driven at 16bits, single channel, with a sample rate of 8000-16025 samples/sec.

ANKI VECTOR - 2021.02.14

19

8.3. CAMERA

Vector has a 720p camera with a 120° field of view. The camera is calibrated at manufacturing
time. The camera vertical sync (frame sync) is connected to the interrupt input on the IMU to
synchronize the samples.

Table 5: The camera

GPIO Description controls
26 Camera interface clock

48 Camera reset

83 Camera power enable (from PM8916 PMIC)

94 Camera standby

8.4. THE LCD

Vector’s LCD is a backlit IPS display assembly made by Truly. The processor is connected to LCD display
the LCD via SPI. Two LEDs are used to illuminate the LCD. The backlight is PWM controlled
by the PM8916 PMIC.

The prior generation, Cozmo, used an OLED display for his face and eyes. This display had the ~ US Patent 20372659
strengths of high contrast and self-illumination. However, OLEDs are susceptible to burn-in and

uneven dimming or discoloration of overused pixels. Anki addressed this with two

accommodations. First it gave the eyes regular motion, looking around and blinking. Second, the

LCD’s illuminated rows were regularly alternated to give a retro-technology interlaced row effect,

like old CRTs.

Vector’s IPS display gives a smoother imagery — Cozmo’s OLED was simply black and white.
The LCD is also much less susceptible to burn-in, at the expense of higher power. Vector’s LCD
can also develop dead lines (or pixels) that grow in number until the display is non-functional.
Some units have a defective LCD, where the glass is not properly sealed. This allows moisture in,
causing progressive damage to the LCD. It is also speculated that these lines come from shocks to
the head, causing breaks in the LCD connections.

8.5. POWER MANAGEMENT

The PM8916 PMIC is responsible for providing power and managing most of the power. The
headboard is capable of being the highest power consumer in Vector. By limiting the clock rate of
the processor, the power use can be capped.

The headboard can be put into a lower power state by reducing the clock rate of processor and
using its sleep features; dimming or turning off the LCD, and reducing the camera frame rate (or
turning it off). The APQB8009 processor has many sophisticated power controls, but these were not
fully realized in Vector’s software.

8.6. TRIM, CALIBRATION SERIAL NUMBERS AND KEYS

Each Vector has a set of per unit calibrations:
= The camera is calibrated

= The IMU is calibrated

ANKI VECTOR - 2021.02.14 20

= The motor position is calibrated, this is performed with each startup
There are per unit keys, MAC addresses and serial numbers

= Each processor has its own unique key called the silicon-based hardware key (SHK),
burned into its fuse mask. This key is used to with the Trust Zone, and secure boot; but it
is not accessible outside of these. There are several modules (trustlets) that must run in the
TrustZone, most provide security on keys that the main system uses. Each of these
trustlets are signed with a certificate chain that is rooted in the unique hardware key. (That
is, they cannot be copied and used on another processor.)

= The WiFi and Bluetooth have assigned, unique MAC addresses.

= Each Vector has an assigned serial number

8.7. MANUFACTURING TEST CONNECTOR/INTERFACE

It is a common practice to include at least one interface on a product for use during manufacture.
This is used to load software and firmware, unique ids — WiFi MACs, serial number — to perform
any calibration steps and to perform run-up checks that the device functions / is assembled
correctly. It is intended to be a fast interface that doesn’t cause yield fallout. Typically (but there
are exception) this is not radio based, as they can interfere or have fiddly issues.

The USB interface is used to load firmware. The microprocessors include a built-in boot-loader
(ABOOT), which includes support for loading firmware into the devices flash.

For the other functions, there are three possibilities
= Thereis a UART, that provides a boot console, but does not accept input
= There is a USB connector that probably is used to load firmware.

= The WiFi, once MAC addresses have been loaded into the unit

0. REFERENCES & RESOURCES

Kingston Technology, Embedded Multi-Chip Package 04EMCP04-NL3DM627-202U, rev 1.2,
2016
https://cdn.discordapp.com/attachments/573889163070537750/595223765206433792/04EM
CP04-NL3DM627-Z202U_- v1.2.pdf

Qualcomm, APQ8009 Processor
https://www.qualcomm.com/products/apg8009

Qualcomm, PM8916/PM8916-2 Power Management ICs Device Specification, Rev C, 2018 Mar
13
https://developer.qualcomm.com/qfile/29367/Im80-p0436-
35 ¢ pm8916pm8916 power management_ics.pdf

ANKI VECTOR - 2021.02.14

21

https://cdn.discordapp.com/attachments/573889163070537750/595223765206433792/04EMCP04-NL3DM627-Z02U_-_v1.2.pdf
https://cdn.discordapp.com/attachments/573889163070537750/595223765206433792/04EMCP04-NL3DM627-Z02U_-_v1.2.pdf
https://www.qualcomm.com/products/apq8009
https://developer.qualcomm.com/qfile/29367/lm80-p0436-35_c_pm8916pm8916_power_management_ics.pdf
https://developer.qualcomm.com/qfile/29367/lm80-p0436-35_c_pm8916pm8916_power_management_ics.pdf

CHAPTER 4

Backpack & Body-
board Electronics

Design Description

This chapter describes the electronic design of the Anki Vector’s supplemental boards:
= Detailed design of the backpack-board, which is a peripheral to the body-board
= Detailed design of the body-board

= Power characteristics

See also Appendix E for the body-board connectors and pin maps.

10. THE BACKPACK BOARD

The backpack board is effectively daughter board to the body-board. It provides extra 10 and a
couple of smart peripherals:

. - Figure 7: Backpack
Bat+ O— *—

board block diagram
Push button

Button
state
Clock 5 74AHC164 [— 4LESB
& Data 2 &
5
S

Clock
O_
& Data
4 MEMs
Touch O— Microphones
Vpwr O—

ANKI VECTOR - 2021.02.14 22

The table below summarizes the functional elements of the backpack board:

Table 6: Backpack

Elements Description A
board functional

74AHC164 A SPI-like GPIO expander. This is used to drive the RGB LEDs. elements
microphones There are 4 far-field MEMS PDM microphones. The microphones are accessed via SPI, in an

output only mode. These are designated MK1, MK2, MK3, MK4
push button A momentary push button is connected to the battery terminal, allowing a press to wake

Vector, as well as signal the processor(s).
RGB LEDs There are 4 RGB LEDs to make up a segmented display. Each segment can be illuminated

individually (in a time multiplexed manner) or may share a colour configuration with its

counterparts.
touch sensor A touch-sensing wire (and passive components)

10.1. BACKPACK CONNECTION
The backpack connection includes:
= Power and ground connections. This includes connection to the battery rail.
= The touch wire as an analog signal to the body-board
= A quasi digital signal out from the momentary push button
= A SPI-like clock, two master-in-slave-out (MISO) signals for the microphones
= A SPI-like clock and master-out-slave-in (MOSI) for the 74AHC164 LED controller

10.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTION

The touch sensing uses an insulated wire separated from the external touch plate. There is no
direct path of conduction from the external plate for ESD. The separation reduces transient voltage
to levels that the electronics can suppress.

10.3. OPERATION

The touch sensor conditioning and sensing is handled by the body-board. The touch sense wire is
merely an extension from the body-board through the backpack board.

The push-button is wired to the battery. When pressed, the other side of the push button signals
both body-board microcontroller, and (if Vector is off) the charger chip to connect power. The
theory of operation will be discussed further in the body-board section below.

The 74AHC164 serial-shift-register is used as a GP10 expander. It takes a clock signal and serial
digital input, which are used to control up to 8 outputs. The inputs determine the state of 8 digital
outputs used to control the RGB LEDs.

Each of the 4 MEMS microphones take a clock signal, and provide a serial digital output. The
body-board reads all four microphones by simultaneously. (This will be discussed in the body-
board section).

ANKI VECTOR - 2021.02.14 23

10.3.1 The LED controls
8 outputs are not enough to drive 4 RGB LEDs (each with 3 inputs) simultaneously with
independent colors. While 3 of the LEDs often the same colour , they can have independent

colors.

There are two possible topologies that can multiple the RGB signals on the 74AHC164 directing

different RGB configurations to each light.? The first possibility is two lights are driven at a time.
LEDs 1 & 2 share the same red, green, and blue signals, but their low side is connected to separate
GPIO lines, acting as a LED select. LEDs 3 & 4 are the same — sharing red, green, and blue. The
even LEDs would share the same select line, and the odd LEDs would share the same. This is the

simplest.

’+ LED1

Clock Select
Data 74AHC164 LED2

—> A
LED3
LED4
Select

The process of illuminating the lights would be:

1. The firmware would send the RGB signals for LEDs 1 and 3, enabling them and disabling

Backpack LED control
scheme

corrections by Melanie
T

Figure 8: Possible
light topology on
backpack board

LEDs 2 and 4.
2. Delay
3. Repeat for LEDs 2 and 4

The second possibility is that each LED’s red signal goes to the same signal on 74AHC164; similar

for green and blue. However each LED’s low side is connected to separate signals on 74AHC164.

LED1
Clock
Data T4AHC164 [» LED2

LED3

LED4

i

Select

This approach takes more work. The process of illuminating the lights in this configuration would
be:

1. The RGB color and light 1 signal enables are sent, illuminating the first light

2. Then the RGB color and light 2 signal enables are sent — but the first light signal is
disabled — illuminating the second light

® I"d need to physically examine a backpack board. This is the limit of examining the available photos

ANKI VECTOR

- 2021.02.14

Figure 9: Another
possible light topology
on backpack board

24

11.

3. This is repeated for each of the other lights.

With either approach, if the switching between the LED’s is done quickly enough — in a short time
interval — the off period isn’t visible. LED’s don’t immediate turn off, rather their brightness
decays over a short period. And the human eye doesn’t perceive short flickers. Although the
lights are “pulse width modulated” — they are turned off a portion of the time, dimming them —
current limiting resistors may have been set to achieve the desired maximum brightness for the

fastest multiplexing time.

The body-board controller can dim the brightness of the LEDs further by choosing larger numbers

of time slots to not illuminate a light.

THE BODY-BOARD

The body board is a battery charger, smart 10 expander, and motor controller. It connects the
battery to the rest of the system and is responsible for charging it. It is based on an STM32F030

which acts as second processor in the system.

Battery | — -«
Battery 5 Push button
Charain Reverse Switch g Touch
9ng 5 Polarity o
Terminal : o
Protection it 74AHC164 |— 4RGB
- LEDs
Vpwr MP2617B
Charger
4 MEMs
Microphones

Regulator /4

ADC

O SPI
Head-Board STM32F030 pww/

Communication .
v UART Microcontroller GPIO

(system controller)

1) Counter
N

Backpack Board

4 Motor
Drivers

4 Motors

e
4 Optical

4 Surface

Proximity
Sensors

Time of Flight

Sensor

ANKI VECTOR

shaft
Encoders

Figure 10: Body-
board block diagram

-+ 2021.02.14 25

The functional elements of the body-board are:

Table 7: The body-

Element Description)

board functional
battery An internal, rechargeable battery pack (3.7v 320 mAh) elements
battery switch Used to disconnect the battery to support off-mode (such as when stored) and to reconnect the

battery with a button press.

charging pad Two pads on the bottom are used to replenish the energy in the battery pack from the dock.
The right, positive charging pad acts a communication interface as well.

motor driver There are four motor drivers, based on an H-bridge design. This allows a motor to be driven
forward and backward.

motors There are four motors: one motor controls the tilt of the head assembly; another controls the
lift of his arms; and two are used to drive him in a skid-steering fashion.

MP2617B charger The Monolithic Power Systems MP2617B serves as the battery charger. It provides a state of
charge to the microcontroller. It also directs power from the charging pads to the rest of the
system while the robot is on the charging dock.

optical shaft encoder The 4 shaft encoders are implemented with photo-interrupters, in conjunction with a slotted
disc on a motor’s shaft, is used to measure the amount a shaft has turned, and its speed. The
two tread motors use a Sharp GP1S092HCPIF photo-interrupter. The lift and head motors use
a dual-channel photo-interrupter to allow discerning the direction of rotation.

regulator A 3.3v regulator is used to supply power to the microcontroller and logical components.
reverse polarity Protects the circuitry from energy being applied to the charging pads in reverse polarity, such
protection as putting Vector onto the charging pads in reverse.

STM32F030 The “brains” of the body-board, used to drive the motors, and RGB LEDs; to sample the
microcontroller microphones, time of flight sensor, proximity sensor, temperature, and the touch sense;, and

monitoring the battery charge state. It communicates with the head-board.

surface proximity 4 infrared proximity sensors are used to detect the surface beneath Vector — and to detect drop

sensors offs (“cliffs”) at the edge of his driving area and to follow lines.
VL53L0x time of A ST Microelectronics VL53L0x time of flight sensor is used to measure distance to objects in
flight sensor front of Vector. This sensor is connected by 12C.

11.1. POWER MANAGEMENT

The battery charging is based on a MP2617B IC, which also provides some protection functions.
There is no Coulomb counter; the state of charge is based solely on the battery voltage.

1111 Protections
The charging pads have reverse polarity protection.

The MP2617B has an over-current cut off. If the current exceeds ~5A (4-6A), the battery will be
disconnected from the system bus. Such a high-current indicates a short. There is no fuse.

The MP2617B has a low voltage cut off. If the battery voltage drops below ~2.4 (2.2-2.7V) the
battery will be disconnected from the system bus (TBD) until the battery voltage rises above ~2.6V
(2.4-2.8V).

The MP2617B may have a temperature sense. If the temperature exceeds a threshold, charging is
paused until the battery cools. The temperature sense is not on the battery. It would be on the
circuit board.

ANKI VECTOR - 2021.02.14 26

11.1.2

Battery connect/disconnect

To preserve the battery there is a need to isolate the battery from the rest of the system when in an
off state. If there is minute current draw, the battery will irreversibly deplete while in storage even
before the first sale. This constraint shapes the battery disconnect-reconnect logic. The schematic
below shows one way to do this:

Figure 11: A
representative battery
connect switch

Bat+ O A Vbat

Backpack
push button

(¢]

Pwr
Enable

Two MOSFETS (a PFET and NFET) act as a switch. These are in a single package, the
DMC2038LVT. (This part is also used in the motor drivers.)

= When the system is in an off state, the MOSFETS are kept in an off state with biasing
resistors. The PFET’s gate is biased high with a resistor. The NFET gate is biased low, to
ground. There is no current flow. Two MOSFETS are needed due to internal body diodes.
The PFET body diode would allow current to flow from the battery (from the source to the
drain). However, this current is blocked by the NFET body diode, which has a different
polarity

= The push button can wake the system. When the button is closed, the battery terminal
(Bat+) is connected to the gate of the NFET, turning it on. A second NFET is also
energized, pulling the PFET gate to ground, turning it on as well. When the button is open,
Bat+ is not connected to anything, so there is no leakage path draining the battery.

= To keep the system energized when the button is open, the STM32F030 MCU must drive
the Pwr Enable line high, which has the same effect as the button closed. The gate
threshold voltage is 1V, well within the GP10 range of the MCU.

= The MCU can de-energize the system by pulling Pwr Enable line low. The switches will
open, disconnect the battery.

= The MCU needs to be able to sense the state of the button while Pwr Enable is pulled high.
The MCU can do this by sampling the Button State signal. This signal is isolated from
from Pwr Enable by a large resistor and pulled to ground by smaller resistor. This biases
the signal to ground while the button is open.

This circuit also provides reverse polarity protection. It will not close the switch if the battery is
connected backwards.

11.1.3 Charging
The charging station pads are connected to a MP2617B charger IC thru a reverse polarity charging station pads
protection circuit. The reverse polarity protection® is a DMG2305UX PFET in a diode

" Q11 and/or Q12

®Q14

ANKI VECTOR - 2021.02.14 27

configuration. This approach has mu

Charger+

The MP2617B internally switches the charger input voltage to supply the system with power, and
to begin charging the battery. This allows the charger to power the system whenever the robot is

ch lower losses than using an equivalent diode.

To MP2617

in the charging station, even when the battery is depleted, or disconnected.

Figure 12: A
representative PFET
based reversed
polarity protection

supplying power from
the charging station

The presence of the dock power, and the state of MP2617B (charging or not) are signaled to the

microcontroller.

The charger goes through different states as it charges the battery. Each state pulls a different

amount of current from the charging pads and treats the battery differently.

Prequalification to Fast Charge transition
Constant Current to Constant Voltage transition

1 ﬁ 4.1V (default)
By
BOV |eeeeenmmmfef T
g
S5 3V ["\ Battery
>0 Voltage
2%
£ s
m O
Battery /" End of Charge
Current Current
0.1C (Default)
0.1C

charging states

Figure 13: Charging
profile (adapted from
Texas Instruments)

| —

k

The basic idea is that the charger first

Time

applies a low current to the battery to bring it up to a

threshold; this is called prequalification in the diagram. Then it applies a high current, call
constant current. Once the battery voltage has risen to a threshold, the charger switches to
constant voltage, and the current into the battery tapers off. | refer to the data sheet for more detail.

constant current
constant voltage

The MP2617B measures the battery temperature by proxy using a thermistor on the PCBA. If the
temperature exceeds a threshold, charging is paused until the battery cools. The microcontroller

also samples this temperature.

The MP2617B supports limiting the input current, to accommodate the capabilities of external

input current limits

USB power converts. There are four different possible levels that the IC may be configured for:
2A is the default limit, 450mA to support USB2.0 limits, 825mA to support USB3.0 limits, and a
custom limit that can be set by resistors. The input limit appears to be set for either default (up to

~2A input), or a programmable input.

Commentary. In my testing, using a USB battery pack charging pulls up to 1A during the
constant current, then falls off to 200mA-200mA during constant voltage, depending on the

ANKI VECTOR

- 2021.02.14

Higher charge rates
are acceptable

28

head-board’s processing load. Stepped down to the ~4V battery the applied current at peak is
approximately 1A.°

With larger batteries this would be too high. Battery cells are normally charged at no more than a
“1C” rate — e.g. the battery maximum charge rate “should” be 320mA at max. Vector’s battery can
be charged at a rate higher than 1C. Heat is what damages batteries. This battery’s low internal
resistance doesn’t produce as much heat; and its large surface to volume ratio lets it shed heat.

1114 Brown-out
The motor stall current is enough to cause Vector to brown-out and shut down unexpectedly. motor stall & brown
This indicates two possible mechanisms: out effects

= If the system browns out the STM32F030, the MCU will no longer hold the power switch
closed, and the system power will be disconnected.

= |f the current exceeds a threshold, the MP2617B will disconnect power to the system. This
threshold is very high — ~5A — and is unlikely to ever be encountered in operation.

Commentary: It may be interesting to modify either the MCU’s Vdd to have a larger retaining
capacitor, or to add a current limiting mechanism for the motors, such as an inline resistor.

11.1.5 Reducing power
The sensors — the encoders, cliff sensors, and time of flight sensor — have power controls. This
allows them to be turned off to reduce power consumption. The time of flight sensor’s sampling
and communication interval can be controlled to greatly reduce power consumption, while still
providing measurements. The other sensors can be duty cycled to maintain a lower power use, but
still detect activity (albeit not measure it accurately).

11.2. ELECTRO-STATIC DISCHARGE (ESD) PROTECTION

The body-board employs a Vishay GMFO05, TVS diode (U4) for electro-static discharge (ESD)
protection, likely on the pushbutton and touch input.

11.3. STM32F030 MICROCONTROLLER
The body-board is controlled by a STM32F030C8T6 microcontroller (MCU), in a LQFP48
package. This processor essentially acts as a smart 10 expander and motor controller. The
microcontroller is also referred to as the system controller
The MCU’s digital inputs include:
= 4 photo-interrupters used as shaft encoders, one for each motor (left, right, head, lift)

= Charger state

The MCU’s digital outputs include:
= 12 motors driver signals
= Charger enable

= Power controls for the sensors

® Other reports suggest up to 2As into the battery, possible with the use of high-power USB adapters intended to support tablet recharge.
As a preventative measure, | have a current limiter between my USB power adapter and Vector’s charging dock. 1Q on the USB
power. Itried 1Q -14Q; these should have limited the current to 1A and S00mA respectively. Instead, Vector would only pull 40mA -
370mA,; in many cases, not enough to charge. Most likely the resistor acted as a part of resistive divider and undermined the chargers
feedback loops.

ANKI VECTOR - 2021.02.14 29

1131

11.3.2

The MCU’s analog inputs include:
= Touch sensor; the momentary push button works by pulling this signal high
= Battery voltage
= Charging pad voltage

= Temperature sensor (measured internally)
The communication signals include:
= 2 SPI-like signals to LED outputs. Uses a clock and data line to send the state to the LEDs.

= 6 SPI from microphones —an SPI MCLK to clock out, a timer divider (in and out), and 2
MISO to receive state of the data from the microphones.

= 41%C pins for communication with the time of flight sensor and IR proximity sensors used
to detect cliffs and lines,

= 2 UART, for communication with the head board

Note: The microcontroller does not have an external crystal and uses an internal RC oscillator
instead.

Manufacturing test connections

The body-board includes SWD pads intended for programming at manufacturing time. After
programming, the firmware cannot be updated via the SWD pads (more on this below). The
firmware can only be updated via a boot-loader.

The body-board also provides RS232-style bidirectional communication that can be used issue
commands, query results, and store calibration and serial number information. See Chapter 12
Body-Board Communication Protocol for more information. The positive (right hand) charging
contact is used for this communication.™

Firmware updates
The firmware is referred to as “syscon” (as in “system controller””). The microcontroller includes a
boot loader, allowing the firmware to be updated by the head-board. The firmware can be updated
in OTA software releases.

STM32 Readout-protection is set to the highest level in the microcontroller. This is intended to
prevent a SWD-based reading or modification of the firmware (including the boot-loader). STM32
processors include a different boot-loader from ST as well; this alternative boot-loader will crash if
any access to program memory is attempted with the readout protection flags set. It is possible to
disable the read-out protection — but mass erasing the chip in the process — with physical access
and SWD tools.* To extract the boot-loader will more skilled and invasive techniques.*

Future changes to the body-board firmware will require expertise. The STM32F030 firmware can
be analyzed using the syscon.dfu file (or be extracted with a ST-Link) and disassembled. Shy of
recreating the firmware source code, patches replacing a key instruction here and there with a jump
to the patch, created in assembly (most likely) code to fix or add feature, then jump back.

0 According to the forums, this is also present on Cozmo and Drive.

1 https://stackoverflow.com/questions/32509747/stm32-read-out-protection-via-openocd
%2 https://rtfm.newae.com/Capture/ChipWhisperer-Nano/
https://www.cl.cam.ac.uk/~sps32/mcu_lock.html

ANKI VECTOR - 2021.02.14

30

Emulation (such as QEMU-STM32) , ST-link ($25) and a development environment will be
required to debug and modify the firmware initially. The development environment ranges from
free to several thousand dollars, the later being the more productive tools.

11.4. SENSING

1141 Temperature sensing
The body-board measures temperature using the microcontrollers internal temperature sense. This
value is higher than the ambient, and can bounce around with activity. The firmware filters the
value to reduce the noise.

11.4.2 Time of Flight sensor
The MCU interfaces with a ST Microelectronics VL53L0x time of flight sensor, which can Anki SDK
measure the distance to objects in front of vector. It “has a usable range 30mm to 1200mm away
(max useful range closer to 300mm for Vector) with a field of view of 25 degrees.”

These sensors work by timing how long it takes for a coded pulse to return. The time value is then
converted to a distance. Items too close return the pulse faster than the sensor can measure. The
measured distance is available to the microcontroller over I°C.

11.4.3 Proximity sensing
Vector has 4 IR proximity sensors that are used to used to detect drops offs (“cliffs”) and to follow
lines. The exact model hasn’t been identified, but the Everlight EAAPMST3923A2 is a typical
proximity sensor. The sensor is an LED and IR detector pair. The sensor reports, via I1°C, the
brightness sensed by the detector. A sensor often pulses its emitter, to reject to sunlight; and uses
a configurable threshold to reduce sensitivity to ambient light.

The IR proximity sensors all share the same I1°C address. To address this, the body board does
something clever. The STM32F030 allows switching the pins that the 1°C clock and data lines go
to. The cliff sensors are connected so that no two shares both the same data and clock line — that is
the clock and data lines combinations are unique to the device being talked with. The firmware
rotates thru which pins to use with 12C to talk to each of the four different cliff sensors. The pins on
the micro are reconfigured to use each of these.

11.4.4 Touch sensing
The touch sensing works by alternating pulsing and sampling (with the ADC) the touch wire. Anki SDK
The samples will vary “by various environmental factors such as whether the robot is on its
charger, being held, humidity, etc.”

11.45 Motor encoders
The position encoders are built using photo-interrupters. The tread motors have slotted photo-
interrupters with a single emitter and detector. The detectors are connected to pins capable of
raising interrupts.

Figure 14: Single
channel slotted photo-
/ NG interrupter

]

The lift and head motors have dual channel photo-interrupters — two detectors. This allows
discerning the direction of rotation, by the sequence that the detectors trigger in.

ANKI VECTOR - 2021.02.14 31

11.4.6

Figure 15: Dual
channel slotted photo-
interrupter

Power control: The microcontroller has a pin connected to the low side of the emitters. When set
low, the emitters are powered (connect to ground); otherwise the emitters are in a low power state.

PDM Microphones

The body-board is responsible to driving and sampling the 4 PDM MEMs microphones. The SPI communication
communication with the backpack board to accomplish this is unique: the four microphones are with 4 microphones
read at a time, using a shared SPI clock and two separate data lines. simultaneously

The microphones take a clock signal as input, and always drive one bit per clock; they have no
chip select. Two microphones can share a single data line. We’ll refer to them as “left” and
“right” here.

vdd Figure 16: Sampling
LefURight ’j two microphones with
Left Data out PDM a single SPI master
SP! h Modulator %® ‘ (adapted from ST
Microelectronics)
SPI Clock
y
Clock PDM Clock
divider

Left/Right
PDM Gnd
- k—
Right Data out Modulator]

Pulling the left microphone’s “left/right” signal low will configure it to emit the data bit while the
PDM clock is low. It does not drive the data line when the clock is high. Similarly, pulling the
right microphone’s “left/right” signal high on will cause it to drive the data bit while the PDM
clock is high.

SPI, however, only receives data bits on the clock’s falling transition— not the rising edge. The
trick is to run the SPI clock at twice the frequency of the PDM clocks, so that the SPI clock’s first
transition low is for the left microphone bit, and the second transition low is for the right
microphone. This is done by dividing the SPI clock by two to produce the PDM clock to the
microphones:

Fi 17:
SPI Clock _+ | + | + | + | + | l\/:i?:lrjc:;hone clock and
PDM Clock

Right Data Out HIGH Z “ HIGHZ “ HIGH Z
Left Data Out HIGH Z HIGH Z

paaout { L H R MH L M R M L)

ANKI VECTOR - 2021.02.14 32

The received data bits (in each byte) will alternate between the left and right microphones, and will
need to be separated and converted by firmware. The SPI peripheral along with a DMA can be
configured to clock in large batches of bytes into a buffer for further processing.

Dividing the clock by two can be performed by a timer built into the STM32. The SPI clock signal
is connected to the input of an STM32 timer (TIMxCHIN). The timer is configured to use an external
input clock source, and generate an output after a divide by two. The output of the timer
(TIMXCHOUT) can then be used as the clock for the PDM microphones.

The clock rates have a limited range on the body board. PDM MEMS microphones clock rates
must be in the range 1 MHz to 3.25MHz. (The products are pretty consistent about this range.)
The SPI clock rate is 2x that PDM’s clock, so the SPI clock rate must be in the range of 2MHz to
6.5MHz. The ST processor’s clock is 48MHz, and its SPI clock must be this frequency divided by
a power of two. This means there are only two possibilities: A 32:1 divider gives an SPI clock
frequency of 6 MHz, and A 16:1 divider gives a clock rate of 3 MHz.

This approach can be extended to sample all four microphones, by coordinating with a second SPI

peripheral:
vdd Figure 18: Sampling
LemRigm’j four microphones with
Left Data out PDM two SPI masters
SPI1 |« -
Modulator (adapted from ST
] Microelectronics)
SPI Clock
Y
Clock PDM Clock
divider
Left/Right
PDM - Gnd
Right Data out Modulator]
vdd
Left/Right'j
P Left Data out PDM
SPi2 Modulator %]
PDM Clock
LeﬁlRightl—l
PDM - Gnd
Right Data out Modulator ‘
11.5. OUTPUTS
115.1 Light control

An earlier section (see section 10.3.1 The LED controls) described how the 74AHC164 receives its
GPIO settings from a serial interface, and uses these to illuminate the LED segments within 4 RGB

LEDs.
Figure 19: SPI-like
STM32F030 »| 74aHC164 |— “LESS interface to the
Data g 74AHC164 and RGB
T LEDs
Clock

ANKI VECTOR - 2021.02.14 33

The 74AHC164 does not share a clock or data line with the PDM’s microphones. The data and
clock are bit-banged — the firmware manually raises and lowers the clock and data lines to send the
data.

Note: care must be taken so that an extra clock edge isn’t received by the 74AHC164. (For
instance, during body board initialization.) There is no synchronization to indicate the first bit of
the 8 bits sent to the 74AHC164.

11.5.2 Motor Driver and control
Each motor driver is an H-bridge, allowing a brushed-DC motor to turn in either direction.

Figure 20: Motor
—/r driver H-bridge

= —|
I
_ —

1

Each side of the H-bridge based on the DMC2038LVT, which has a P-FET and N-FET in each
package. Two of these are needed for each motor.

The MCU (probably) independently controls the high side and low side to prevent shoot thru. This
is done by delaying a period of time between turning off a FET and turning on a FET. The
microcontroller drives the PFET by using its GPIO output in open-collector/open-drain
configuration: it turns the FET on by pulling gate low, and lets a resistor pull the gate high (to
battery supply) to turn the FET off.

The motors can be controlled with a control loop that takes feedback from the optical encoder to
represent speed and position. The firmware must take care to prevent burn out if they have been
stalled at full power for 15 seconds or more.

11.6. COMMUNICATION

The communication protocols are described in Chapter 12.

11.7. COMMUNICATION WITH THE HEAD-BOARD

The body-board communicates with the head-board via RS-232 3.3V (3 Mbits/sec™®). As the MCU
does not have a crystal, there may be communication issues from clock drift at extreme
temperatures; since Vector is intended for use at room temperature, the effect may be negligible.

The body-board does something clever to communicate at such a high rate, while supporting the
other functions. The issue is that the microcontroller does not have enough DMA resources for the
UART and the SPI channels. The DMA has fixed channels to support the SPI receive, but this is

2 Value from analyzing the firmware, RAMPOST and vic-switchboard programs. Melanie T measured it on an oscilloscope and
estimated it to be 2Mbps.

ANKI VECTOR - 2021.02.14 34

the same as the channel available for the UART TX. But there are two remaining DMA channels
available for the UART RX function.

To send data to the head board, the firmware retasks one of these DMA channels. The DMA
peripheral doesn’t care which address it sends to or receives from; nor does it enforce direction.
What it means to be a “UART RX” channel is that it looks at the high bits of the address of the
peripheral it is connected to — the UART in this case — and uses that to transfer each byte when a
“received byte” event is received from the UART. The firmware configures the DMA channel to
transfer a byte to the UART TX channel... and the DMA will transfer a byte only when the UART
receives a byte. To ensure that a byte is received, a weak resistor is connected from the TX to the
RX line so that the UART is receiving each byte it sends, triggering the next byte to be sent.

The firmware can be updated over the serial communication by the head-board.

11.7.1 Communication with manufacturing test station
The body-board communicates with the test station using a RS-232 1.8V (115.2 Kbits/sec') half-
duplex protocol. The communication pin is also used for measuring the charger input voltage.

The firmware can be updated over the serial communication by the head-board.

Note: this communication is only implemented in DVT firmware; it is not implemented in
production firmware.

12. REFERENCES & RESOURCES

Amitabha, Benchmarking the battery voltage drain in Anki Vector and Cozmo, 2018 Dec 31
https://medium.com/programming-robots/benchmarking-the-battery-voltage-drain-in-anki-
vector-and-cozmo-239f23871bf8

Diodes, Inc, 74AGC164 8-Bit Parallel-Out Serial Shift Registers, Rev 2, 2015 Aug
https://www.diodes.com/assets/Datasheets/74AHC164.pdf

Diodes Inc, DMG2305UX P-Channel Enhancement Mode MOSFET
https://www.diodes.com/assets/Datasheets/DMG2305UX.pdf

Diodes, Inc, DMC2038LVT Complementary Pair Enhancement Mode MOSFET
https://www.diodes.com/assets/Datasheets/products_inactive _data/DMC2038LVT.pdf

Entinger, Alexander; Anki Vector base-board connector
https://github.com/aentinger/anki-vector-baseboard

Everlight EAAPMST3923A2

Monolithic Power, MP2617A, MP2617B 3A Switching Charger with NVDC Power Path
Management for Single Cell Li+ Battery, Rev 1.22 2017 Jun 29
https://www.monolithicpower.com/pub/media/document/MP2617A MP2617B_r1.22.pdf

Panda, a data sheet for a similar single-cell lithium battery
https://panda-bg.com/datasheet/2408-363215-Battery-Cell-37V-320-mAh-Li-P0-303040.pdf

Sharp GP1S092HCPIF Compact Transmissive Photointerrupter, 2005 Oct 3
https://datasheet.lcsc.com/szlcsc/Sharp-Microelectronics-GP1S092HCPIF _C69422.pdf

ST Microelectronics, STM32F030x8, Rev 4, 2019-Jan
https://www.st.com/resource/en/datasheet/stm32f030c8.pdf

ST Microelectronics. AN5027 Application Note: Interfacing PDM digital microphones using
STM32 MCUs and MPUs, Rev 2, 2019 July
https://www.st.com/resource/en/application _note/dm00380469-interfacing-pdm-digital-
microphones-using-stm32-mcus-and-mpus-stmicroelectronics.pdf

¥ Value from analyzing the firmware.

ANKI VECTOR - 2021.02.14

https://medium.com/programming-robots/benchmarking-the-battery-voltage-drain-in-anki-vector-and-cozmo-239f23871bf8
https://medium.com/programming-robots/benchmarking-the-battery-voltage-drain-in-anki-vector-and-cozmo-239f23871bf8
https://www.diodes.com/assets/Datasheets/74AHC164.pdf
https://www.diodes.com/assets/Datasheets/DMG2305UX.pdf
https://www.diodes.com/assets/Datasheets/products_inactive_data/DMC2038LVT.pdf
https://github.com/aentinger/anki-vector-baseboard
https://www.monolithicpower.com/pub/media/document/MP2617A_MP2617B_r1.22.pdf
https://panda-bg.com/datasheet/2408-363215-Battery-Cell-37V-320-mAh-Li-Po-303040.pdf
https://datasheet.lcsc.com/szlcsc/Sharp-Microelectronics-GP1S092HCPIF_C69422.pdf
https://www.st.com/resource/en/datasheet/stm32f030c8.pdf
https://www.st.com/resource/en/application_note/dm00380469-interfacing-pdm-digital-microphones-using-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00380469-interfacing-pdm-digital-microphones-using-stm32-mcus-and-mpus-stmicroelectronics.pdf

ST Microelectronics. Touch sensing
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4
d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr.content/translations/en.DM004456
57.pdf
https://www.st.com/en/embedded-software/32f0-touch-lib.html
https://hsel.co.uk/2016/05/22/stm32f0-software-capacitive-touch/
https://github.com/pyrohaz/STM32F0-SoftTouch

ST Microelectronics. Tutorial for MEMS microphones, Rev2, 2017 Feb
https://www.st.com/resource/en/application _note/dm00103199-tutorial-for-mems-
microphones-stmicroelectronics.pdf

ST Microelectronics. VL53L0X World’s smallest Time-of-Flight ranging and gesture detection
sensor, Rev 2, 2018 Apr
https://www.st.com/en/imaging-and-photonics-solutions/vI5310x.html
https://www.st.com/resource/en/datasheet/vI5310x.pdf

ANKI VECTOR - 2021.02.14 36

https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr:content/translations/en.DM00445657.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr:content/translations/en.DM00445657.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group0/ed/0d/4d/87/04/1d/45/e5/DM00445657/files/DM00445657.pdf/jcr:content/translations/en.DM00445657.pdf
https://www.st.com/en/embedded-software/32f0-touch-lib.html
https://hsel.co.uk/2016/05/22/stm32f0-software-capacitive-touch/
https://github.com/pyrohaz/STM32F0-SoftTouch
https://www.st.com/resource/en/application_note/dm00103199-tutorial-for-mems-microphones-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00103199-tutorial-for-mems-microphones-stmicroelectronics.pdf
https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
https://www.st.com/resource/en/datasheet/vl53l0x.pdf

CHAPTER 5

Accessory Electronics

Design Description

This chapter describes the electronic design of the Anki Vector accessories:
= The charging station
= The habitat (Vector space)

= The companion cube

13. CHARGING STATION

The charging station is intended to provide energy to Vector, allowing him to recharge.

Figure 21: Charging

Home symbol that Vector . .
station main features

can identify

Terminals to charge
Vector

USB power Visual path for Vector to

cord \ follow

The charging station has a USB cable that plugs into an outlet adapter or battery. The adapter or
battery supplies power to the charging station. The base of the station has two terminals to supply
+5V (from the power adapter) to Vector, allowing him to recharge. The terminals are offset in
such a way to prevent Vector from accidentally being subject to the wrong polarity. Vector has to
be backed into charging station in mate with the connectors. Vector face-first, even with his arms
lifted, will not contact the terminals.

The charging station has an optical marker used by Vector to identify the charging station and its
pose (see chapter 21).

USB Figure 22: Charging

Connector station block diagram

Charging
Terminals

ANKI VECTOR - 2021.02.14 37

14. HABITAT (VECTOR SPACE)

Vector’s habitat — cheekily called a Vector Space — is a 12”x12” tray with curved edge, and a
corner for a charging dock to sit. It serves as a place that Vector can be active in during the day,
without driving off of the table or getting lost. This lets him remain powered on, and respond
when his human companion returns. When a person would like to play with Vector, they would
take him out of this little area.

There seems to be some references to the habitat in the behavior tree, and in the developer
visualization tools to habitat. It is possible that they created or were creating the ability for
Vector to recognize the habitat and adjust his behaviors. The bottom of the habitat is dark, but
with a thick white line around the perimeter near the edge. The line likely serves as a signal to
Vector to turn away before running into the edge, or to drive along. It may be detected by Vector’s
cliff sensors.

15. CUBE

The companion cube is a small toy for Vector play with. He can fetch it, roll it, and use it to pop-
wheelies. Each face of the cube has a unique optical marker used by Vector to identify the cube
and its pose (see Chapters 19 and 21).

4 RGB LEDs Figure 23: Cube’s
main features

Screw to remove panel

Removable panel, to
access battery

Lift point that Vector's arm can
hook into

Although the companion cube is powered, this is not used for localization or pose. The electronics
are only used to flash lights for his human companion, and to detect when a person taps, moves the
cube or changes the orientation.

The cube has holes near the corners to allow the lift to engage, allowing Vector to lift the cube.
Not all corners have such holes. The top — the side with the multicolour LEDs — does not have
these. Vector is able to recognize the cubes orientation by symbols on each face, and to flip the
cube so that it can lift it.

The electronics in the cube are conventional for a small Bluetooth LE accessory:

Figure 24: Block
diagram of the Cube’s

VDD electronics
DA14580

Accelerometer

ANKI VECTOR - 2021.02.14 38

The Cube’s electronic design includes the following elements:

Table 8: The Cube’s

electronic design

Element Description

accelerometer The accelerometer is used to detect movement and taps of the cube. elements
battery The cube is powered by a 1.5 volt N / E90 / LR1 battery cell.*®

crystal The crystal provides the accurate frequency reference used by the Bluetooth LE radio.

Dialog DA14580

RGB LEDs

This is the Bluetooth LE module (transmitter/receiver, as well as microcontroller and protocol
implementation).

There are 4 RGB LEDs. They can flash and blink. Unlike the backpack LEDs, two LEDs can
have independent colors.

The communication protocol is described in Chapter 14, and the GUIDs for the services and
characteristics are given in Appendix G.

15.1. OVER THE AIR APPLICATION FIRMWARE DOWNLOAD

The DA14580 has a minimal ROM boot loader that initializes hardware, moves a secondary boot
loader from “One Time Programmable” ROM (OTP) into SRAM, before passing control to it. The
firmware is executed from SRAM to reduce power consumption. The secondary boot-loader is
passed the application firmware from Vector over Bluetooth LE. This application is loaded into
SRAM and passed control.

15.2. REFERENCES & RESOURCES

Dialog, SmartBond™ DA14580 and DA14583
https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-
energy/smartbond-dal4580-and-dal4583

Dialog, DA14580 Low Power Bluetooth Smart SoC, v3.1, 2015 Jan 29

Dialog, UM-B-012 User manual DA14580/581/583 Creation of a secondary bootloader,
CFR0012-00 Rev 2, 2016 Aug 24
https://www.dialog-semiconductor.com/sites/default/files/um-b-

012 dal4580 581 583 creation of a secondary boot loader v3.2.pdf

Dialog, Application note: DA1458x using SUOTA, AN-B-10, Rev 1, 2016-Dec-2
https://www.dialog-semiconductor.com/sites/default/files/an-b-
010_dal4580 using_suota_0.pdf

%5 The size is similar to the A23 battery, which will damage the cube’s electronics.

ANKI VECTOR - 2021.02.14 39

https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-energy/smartbond-da14580-and-da14583
https://www.dialog-semiconductor.com/products/connectivity/bluetooth-low-energy/smartbond-da14580-and-da14583
https://www.dialog-semiconductor.com/sites/default/files/um-b-012_da14580_581_583_creation_of_a_secondary_boot_loader_v3.2.pdf
https://www.dialog-semiconductor.com/sites/default/files/um-b-012_da14580_581_583_creation_of_a_secondary_boot_loader_v3.2.pdf
https://www.dialog-semiconductor.com/sites/default/files/an-b-010_da14580_using_suota_0.pdf
https://www.dialog-semiconductor.com/sites/default/files/an-b-010_da14580_using_suota_0.pdf

[This page is intentionally left blank for purposes of double-sided printing]

ANKI VECTOR - 2021.02.14 40

PART I1

Basic Operation

This part provides an overview of Vector’s software design.

= THE SOFTWARE ARCHITECTURE. A detailed look at Vector’s overall software architecture and
main modules.

= STARTUP. A detailed look at Vector’s startup and shutdown processes

= POWER MANAGEMENT. A detailed look at Vector’s architecture for battery monitoring,
changing and other power management.

= Basic INPUT AND OuTPUT. A look at push button, touch sensing, surface proximity sensors,
time of flight proximity sensing, and backpack LEDs.

= INERTIAL MOTION SENSING

ANKI VECTOR - 2021.02.14 41

[This page is intentionally left blank for purposes of double-sided printing]

ANKI VECTOR - 2021.02.14 42

CHAPTERG

Architecture

This chapter describes Vector’s software architecture:

= The architecture

= The emotion-behaviour system

= The communication infrastructure

= Internal support

Vector’s architecture has a structure something like:

»i

Cloud

"1 servers

Audio o .
Inputs » Trigger
Video
Inputs
Intent /
frame
\ 4
Emotion Behaviour Motion
Inputs > State . »{ trajectory
) Engine
Engine generator
A f
Emotion state

Motors,
LEDs,
LCD,
Sound

Behaviour results

Fast control loops — to respond quickly — are done on the Vector’s hardware. Speech
recognition, natural language processing — very processing heavy items — are sent to the cloud.
Face recognition, and training for faces are not sent to the cloud.

Vector is built on a version of Yocto Linux. Anki selected this for a balance of reasons: some
form of Linux is required to use the Qualcomm processor, the low up front (and no royalty)

OVERVIEW OF VECTOR’'S COMMUNICATION INFRASTRUCTURE

Figure 25: The overall
functional block
diagram

explored in Casner,
and Wiltz

costs, the availability of tools and software modules. Qualcomm pushes the Android stack of tools
in particular for their processors. The Qualcomm is a multi-processor, with four main processing
cores and a GPU. Vector runs a handful of different application programs, in addition to the OS’s

foundational service tasks and processes.

ANKI VECTOR

- 2021.02.14 43

16.1. APPLICATION SERVICES ARCHITECTURE

Vector’s software is divided into the following services:

f——————— N G — Figure 26: The overall
I Ny communication
| crashuploader

|

anki-crash-log infrastructure

_______ J —

Vic-dasmgr
(stats &
diagnostic data)

——

Cloud
-

Vic-Cloud >
Camera Vic-Engine (preferences, | —— — -
audio for NLP)
Screen Vic-Anim
Mobile App
& Python
SDK
Vic-Robot applications
Vic-Spine Mobile-App
Body Board:
IMU Motors, LEDs, touch, i
Time of Flight & LT
surface proximity
sensors
These services are:
Services Speculated purpose Tabl.e 9: Vector
services & processes
vic-anim This service plays multi-track animations (which include motions as well as

LCD display and sound)

config file: |/anki/etc/config/platform_config. json|
/anki/data/assets/cozmo_resources/|webserver/webServerConfig_anim. json|

vic-bootAnim LCD and sound animations during boot.

vic-cloud This service connects to the cloud services for natural language services.

vic-crashuploader A service that sends logs (especially crash logs and mini-dumps) to remote

anki-crash-log servers for analysis.

vic-dasmgr Gathering data on processor and feature usage, servin as a foundation for
gathering data when performing experiments on settings and features.

vic-engine The vision system and behaviour / emotion engine. Hooks into the camera and
face recognizer.

vic-gateway Responsible for the local API/SDK services available as gRPC services on
https.

vic-robot Drives Vector along a path, and has all of the motor controls. It also includes

the sensor filtering to detect lift, fall, etc. as well as basic power management.
Internally has “vic-spine” that communicates with the body-board,and resets
the watchdog timers.

vic-switchboard Supports the Bluetooth LE communication interface, including the mobile

ANKI VECTOR - 2021.02.14 44

application protocol (see Chapter 13). Routes messages between the other
services? Manages the access keys

vic-webserver A developer-only tool that aids in visualizing the internal state of the software.

Within the each vic- server processes, there are one or more event-driven communication threads.
A thread likely has the following basic structure:

Figure 27: Basic

Input Thread communication thread

Messages structure

Dequeue

Message | Message /

event
Output " Thread
Messages |
Process event / |

1

message

A

(G

The communication threads have an input message queue. On Vector these include

= Asocket, between processes
= Aserial interface with the body board
= A web-socket

= Other, inter-thread message queue

The communication thread blocks on one or more message queue events. It wakes when there is
an incoming event/message, or there has been an error or timeout while waiting. When it wakes, it
dequeues the message, takes action and goes back to waiting. It may post messages (or other
signals) to other threads, possibly indirectly as a result of framework/library/system calls.

Within a server process, convenient C++ data structures are used. The vic- servers also use CLAD,
and JSON data structures, and include many helper procedures to convert between the two. It
appears that a process interprets and generates a JSON data structure. To communicate with
another process, it converts the JSON to a CLAD (since it is a contiguous span of bytes), sends that
to the other process; the other process reverses the process, converting it JSON and using that
interpret the message.

ANKI VECTOR - 2021.02.14 45

16.2. EMOTION MODEL, BEHAVIOUR ENGINE, ACTIONS AND ANIMATION ENGINE

Vector’s high-level Al is organized around an emotion model, and a behaviour engine that drives ~ Anki Vector SDK
goals, responses and other actions.

Emotion Animation tri Figure 28: The
SETE; nimation Toger behaviour-animation

State > .

Engine Engine } flow
Select
animation
based on
mood

Emotion state

’ Animation

Animation
Engine

A 4
Lift motors, Head angle,
Driving

Procedural Face

Visual Animations
Backpack LEDs

Sound

There are many similar terms used within Vector’s AI model, but there are subtle distinctions
between them:

e An Al Feature is the high level behaviors as a person would experience. There are about
70 of these. Note the name shouldn’t be confused with a feature flag or feature toggle;
that is a different concept, for software elements that are not ready yet, but included in the
code base.

e Abehavior is “a complex task [that] may include combinations of animation, path
planning or other functionality. Examples include” driving to the charger, set the lift
height, etc. An Al Feature takes at least one behavior to carry out; it often takes many.
The current emotional state can influence which behavior is selected, and affect how it is
carried out. Intents (response to voice interaction) can initiate behaviors. Behaviors can
initiate actions.

e An action is like a mini-behavior, with some differences. Multiple actions can run at a
time — so long as they don’t use the same resources— but only one behavior can run at a
time. Actions can wait in a queue.

e Ananimation is a scripted motion, sound, light pattern, and/or facial animation (or picture
on the display) that Vector carries out. Behaviors and actions can initiate animations. The
animation engine selects the specific animation, from a pool of alternatives, based on
context and current emotional state. An animation can’t use the sensors, so it can’t adapt
to the environmental conditions. For instance, to drive up to a hand (or a cube) requires the
time of flight sensor; so an action is required.

ANKI VECTOR - 2021.02.14 46

17. STORAGE SYSTEM

Vector’s system divides the storage into many regions, primarily based on whether the region is
modifiable (and when), and which subsystem manages the data. Appendix F describes the flash
partitions and file system structure. See chapter 7 for a description of the partitions used for
system start up and restore.

Most of the partitions on the flash storage are not modifiable — and are checked for authenticity
(and alteration). These partitions hold the software and assets as delivered by Anki (and
Qualcomm) for a particular release of the firmware. They are integrity checked as part of the start
procedure. (See Chapter 7 for a description.)

Data that is specific to the robot, such as settings, security information, logs, and user data (such as
pictures) are stored in modifiable partitions. Some of this data is erased when the unit is “reset” to
factory conditions

These are described below.

17.1. ELECTRONIC MEDICAL RECORD (EMR)

Vector’s “Electronic Medical Record” (EMR) partition holds the following information:

Offset Size Type Field Description Table 10: Electronic

Medical Record (EMR)

0 4 uint32_t ESN Vector’s electronic serial number (ESN). This
is the same serial number as printed on the
bottom of Vector. Serial numbers starting with
00e are engineering units.

4 4 uint32_t HW_VER Hardware revision code
8 4 uint32_t MODEL The model number of the product
12 4 uint32_t LOT_CODE The manufacturing lot code
16 4 uint32_t PLAYPEN_READY_FLAG The manufacturing fixture tests have passed; it
is ok to run play pen tests.
20 4 uint32_t PLAYPEN_PASSED _FLAG Whether or not Vector has passed the play pen
tests.
24 4 uint32_t PACKED_OUT_FLAG
28 4 uint32_t PACKED_OUT_DATE (In unix time?)
32 192 uint32_t[4] reserved
224 32 uint32_t[8] playpen
256 768 uint32_t[192] fixture
This information is not modified after manufacture; it persists after a device reset or wipe.
17.1.1 FAC (Factory) Mode
Vector has a “FAC” mode, used in the factory to test and calibrate the robot. When in FAC Figure 29: The LED
mode, the display has a red background, with either the letters “FAC” or one two two digits ?:gfem when in FAC

displayed (these are likely the testing stage to be performed), and his backpack lights have an
unusual color pattern — red, green, and blue.

This mode is never intended to be seen outside of the factory, so little is known. Only a couple

ANKI VECTOR - 2021.02.14 47

of units have been found in this mode; one after it had been intentionally damaged, and its
calibration & EMR data were corrupted or inaccessible.®® In all likelihood, the software checks its
EMR to see if it has been released; if not, it enters the FAC mode at whatever the “next” stage is
according to the EMR. At that point VVector expects to be placed into manufacturing test fixtures,
such as the playpen.

17.1.2 Manufacturing Lot Codes
A manufacturing lot code is an identifier that used to track the components, and robot
subassemblies that were used in robots, as well as the date they were made. “If there's a problem
in a particular batch of components (or maybe the people working at the factory that day), we can
identify which robots were affected.”

“A lot code is 4 numbers. A typical lot code is 2 18 36 201.
= “2isthe factory. All Vectors were made at factory 2.”
= 18 isthe last two digits of the year, 2018.
= “36 means week 36 of 2018 - that's first week of September.
= “201 means ‘Standard Edition Vector, US-only version””

The robots were made “in big batches in July/August, and they didn't start coming back [to
customer service] until January/February,” when Anki would “put the fixes into the next big batch
the upcoming year.”

17.1.3 Playpen Data
The playpen is a testing area with ramps, barriers, camera targets at a variety of angles, cube and a
charging station. Vector is put into one during manufacture to check his sensors, camera
calibration, motor function, microphone and a check over his overall functions. The playpen tests
involve many checks to ensure that his head is assembled and attached correctly, as wells that his
lower body is assembled correctly. These use almost of all of his functions: that he can correctly
navigate, detect cliffs, see and count dots, see markers (getting their type and size correct), dock,
and charge.

The images that Vector sees during these tests are kept with unit. This way, if the unit is returned
later with a vision-related problem, the images from the manufacturing are there to see if, as part of
the manufacturing record for analysis of returned products, “we can go back to those images and
see if it's a new problem or was always there.”

There is also a sound booth that checked that his speaker was working properly and did not exceed
limits.

%8 https://forums.anki.com/t/any-one-know-what-error-code-50-is/40891

ANKI VECTOR - 2021.02.14 48

https://forums.anki.com/t/any-one-know-what-error-code-50-is/40891

17.2. OEM PARTITION FOR OWNER CERTIFICATES AND LOGS

The OEM partition is a read/writeable ext2 file-system. It is used to hold information from the
robots testing at the factory, and its cloud access certificates:

Table 11: OEM

Folder Description T
partition file hierarchy

The top level holds the log files.

cloud Holds the SDK TLS certificate and signing keys. With newer
firmware, the folder may also hold some other calibration
information.

nvStorage Holds some binary “.nvdata” files

18. SECURITY AND PRIVACY

Vector’s design includes a well thought-out system to protect against disclosing (i.e. providing to Anki Security &
strangers) sensitive information, and allowing the operator to review and delete it at any time: Privacy Policy

= Photographs taken by Vector are not sent to (nor stored in) a remote server. They are
stored in encrypted file system, and only provided to authenticated applications on the
local network. Each photograph can be individually deleted (via the mobile application).

= The image stream from Vector’s camera is not sent to a remote server. It is only provided
to authenticated applications on the local network.

* The data used to recognize faces!” and the names that Vector knows are not sent to (nor
stored in) a remote server. The information is stored in an encrypted file system. The list
of known faces (and their names) is only provided to authenticated applications on the
local network. Any facial recognition data not associated with a name is deleted when
Vector goes to sleep. Facial data associated with an individual name can be deleted (along
with the name) via the mobile application.

= “[After] you say the wake words, “Hey Vector”, Vector streams your voice command to
the cloud, where it is processed. Voice command audio is deleted after processing. Text
translations of commands are saved for product improvement not associated with a user.”

= The audio stream from the microphone — if it had been finished being implemented —
would have been provided to authenticated applications on the local network.

= Information about the owner can be erased using the Clear User Data menu option.

= Control of the robots movement, speech & sound, display, etc. is limited to authenticated
applications on the local network.

Vector’s software is protected from being altered in a way that would impair its ability to secure
the above. At the high level, this is done by requiring signed software files, and a signed file
system that is checked for alteration. The protections extend all the way to low-level electronics,
where the JTAG access fuses are blown, so that extracting or modifying RAM, flash or other data
can not be done. (Anki did this as a matter of standard operating procedure on all electronic
products.)

" The Anki privacy and security documents logically imply that the face image is not sent to Anki servers to construct a recognition
pattern. There are no communication structures to send images to the cloud.

ANKI VECTOR - 2021.02.14 49

18.1.

18.2.

18.3.

18.3.1

Vector also indicates when it is doing something sensitive:

= When the microphone is actively listening, it is always indicated on the backpack lights
(blue).

= The microphone is enabled by default, but only listening for the wake word, unless
Vector’s microphone has been disabled.

= When the camera is taking a picture (to be saved), Vector makes a sound.
= When the camera is on?

= Unless the backpack lights are all orange, the WiFi is enabled. (All orange indicates it is
disabled.)

ENCRYPTED COMMUNICATION

The personally identifying information and other data about the owner — photos, account
information, WiFi passwords, and so one — is only sent on encrypted channels.

ENCRYPTED FILESYSTEM

The file system with the user’s data — photos, account information, WiFi passwords, and so one
— is encrypted. The encryption key is unique to each robot and not shared elsewhere.

THE OPERATING SYSTEM

There is a chain of firmware signed by Qualcomm and Anki. This is intended to protect Vector’s
software from being altered in a way that would impair its ability to secure the information above.

Android boot loaders typically include a few powerful (but unchecked) bits that disable the
signature checking, and other security features. These bits typically are set either thru commands
to the firmware during boot up, by applications, or possibly by hack/exploit. Sometimes this
requires disassembling the device and shorting some pins on the circuit board.

Vector doesn't support those bits, nor those commands. Signature checking of the boot loader,
kernel and RAM disk can't be turned off.

The possibility for future modifications to Vector’s software

Anki created special Vectors for internal development. The software for these units has a special
version of the kernel and RAM disk that does not check system room file system, and makes it
writable. This file system has Vector’s application software, supports SSH. This software was
tightly controlled, and “only .,. available inside the Anki corporate network.” For purposes of
customizing and updating Vector, this version is essential. (Note: the kernel and RAM disk can’t
be modified.)

Note: the OTA software has a “dev” (or development) set of OTA packages. Those packages are
not the same; they are essential software release candidates being pushed out for test purposes.

Jane Fraser, 2019

ANKI VECTOR - 2021.02.14 50

18.4. AUTHENTICATION

The web services built into VVector require a token. This is used to prove that you have
authenticated (with the more capable — and not physically accessible — servers). This
authentication is to protect:

= Photos already on Vector

= The image stream from the camera

= The audio stream from the microphone — if it had finished being implemented
= The sensitive owner information

= Controlling the robot

(That is to say, to prevent disclosure)

19. CONFIGURATION AND ASSET FILES

Vector’s software is configured by JSON files. Some of the JSON files were probably created by
a person (for the trivial ones). Others were created by scripting / development tools; a few of these
were edited by developers. These JSON files are clearly intended to be edited by people:

= The files are cleanly spaced, not in the most compact minimized size

= The JSON parser supports comments, which is not valid JSON. Many files have
comments in them. Many have sections of the configuration that are commented out.

19.1. CONFIGURATION FILES

The top-level configuration file provides the paths to the network other configuration files. It is
found at:

|/anki/etc/config/platform_config. json|

This path is hardcoded into the vic-dasmgr, and provided in the editable startup files for vic-anim
and vic-engine. The configuration file contains a JSON structure with the following fields:

Field Value Description & Notes Table 12: The
platform config JSON
DataPlatformCachePath “/data/data/com.anki.victor/cache” This folder is used to hold logs and structure

diagnostic information until it can be
sent to the cloud servers.

DataPlatformPersistentPath ~ “/data/data/com.anki.victor/persistent” This folder holds the settings for the
Vector application software.

DataPlatformResourcesPath ~ “/anki/data/assets/cozmo_resources” The path to most configuration files and
assets

When describing the configuration and asset files, a full path will be provided. When the path is
constructed from different parts, the part that is specified in another configuration or binary file
will be outlined. The path to a settings file might look like:

/anki/assets/cozmo_resources/ |config/ engine/settings_config. jsonl

The path leading up to the settings file (not outlined in red) is specified in an earlier configuration
file, usually the platform configuration file described above.

ANKI VECTOR - 2021.02.14 51

20. SOFTWARE-HARDWARE LAYERS

= Body-board input/output software architecture
= The LCD display

= Camera

20.1. THE BODY BOARD INPUT/OUTPUT
The body-board input-output software has a structure like so:

Figure 30: The body

board-related
architecture

Vic-robot

Body
Debounce UART board
Digital Digital Motor
Input Analog In Output SPI 12C Controllers

| Button | | Touch | Battery RGB LEDs Time of | | Encoders Motors
Disconnect Flight
| Charger| | Battery || Thermistor Microphones

20.2. THE LCD DISPLAY

Four different applications may access the display, albeit not at the same time:

Figure 31: The LCD
s vic-anim LI P s architecture
bootAnim Code faultDisplayCode
A
Frame buffer o .
Idev/fb0 s LCD display

Note: displayFaultCode is present on Vector, but it is not called by any program.

The LCD is connected to the MPU via an SPI interface (/dev/spidev1.0). The frame buffer
(/dev/fb0) is essentially a buffer with metadata about its width, height, pixel format, and
orientation. Application modifies the frame buffer by write() or memmap() and modifies the bytes.
Then the frame buffer has the bytes transfer (via SPI) tot the display.

vic-anim employs a clever screen compositing system to create Vector’s face (his eyes), animate
text jumping and exploding, and small videos, such as rain or fireworks.

The vic-faultDisplayCode and Customer Care Information Screen of vic-anim have a visual
aesthetic is unlike the rest of VVector. These modes employ a barebones system for the display.

ANKI VECTOR - 2021.02.14 52

The text appears to rendered into the buffer using OpenCV’s putText() procedure, and transferring
it to the display without any further compositing.

Not sure if the transfer is in a driver, in the kernel, or in user space... or which process would have
it in user space.

20.3. THE CAMERA

The camera subsystem has the following architecture:

— Figure 32: The
- - > hitect
Vic-engine _ . Python SDK camera architecture
libcozmo_engine Vic-Gateway — — — P Tegtt
libcameraService applications
A
IMU 4
A dev/socket/vic-engine-cam_clientO
Vertical sync
Camera »| mm-anki-camera
MIPI
The camera’s vertical synchronization signal is connect to the interrupt line on IMU, triggering Daniel Casner, 2019
accelerometer and gyroscope sampling in sync with the camera frame. The vision is used as a Embedded Vision

navigation aid, along with the IMU data. The two sources of information are fused together in Summit

the navigation system (see chapter 19) to form a more accurate position and relative movement
measure. The image must be closely matched in time with the IMU samples. However the
transfer of the image from the camera to the processor, then thru several services to vic-engine
introduces variable or unpredictable delays. The camera’s vertical sync — an indication of when
the image is started being sampled — is used to trigger the IMU to take a sample at the same time.

The camera is also used as an ambient light sensor when Vector is in low power mode (e.g.
napping, or sleeping). In low power mode, the camera is suspended and not acquiring images.
Although in a low power state, it is still powered. The software reads the camera’s auto
exposure/gain settings and uses these as an ambient light sensor. (This allows it to detect when
there is activity and Vector should wake.)

21. REFERENCES & RESOURCES

Anki, Elemental Platform
https://anki.com/en-us/company/elemental-platform.html

Describes, as a marketing brochure, much of Anki’s product network architecture.

Anki, Vector Security & Privacy FAQs, 2018
https://support.anki.com/hc/en-us/articles/360007560234-Vector-Security-Privacy-FAQs

Casner, Daniel, Consumer Robots from Smartphone SoCs, Embedded Systems Conference Boston,
2019 May 15
https://schedule.esc-boston.com//session/consumer-robots-from-smartphone-socs/865645

Stein, Andrew; Kevin Yoon, Richard Alison Chaussee, Bradford Neuman, Kevin M.Karol, US
Patent US2019/01563A1, Custom Motion Trajectories for Robot Animation, Anki, filed 2018
Jul 13, published 2019 Apr 18,

Qualcomm, Snapdragon™ 410E (APQ8016E) r1034.2.1 Linux Embedded Sofiware Release Notes,
LM80-P0337-5, Rev. C, 2018 Apr 10
Im80-p0337-
5_c_snapdragon_410e_apq8016e_r1034.2.1_linux_embedded_software_revc.pdf

ANKI VECTOR - 2021.02.14 53

https://anki.com/en-us/company/elemental-platform.html
https://support.anki.com/hc/en-us/articles/360007560234-Vector-Security-Privacy-FAQs
https://schedule.esc-boston.com/session/consumer-robots-from-smartphone-socs/865645

Tariq, Talha Securing Autonomous Robots at Scale, 2018 Oct 3
https://www.infosecuritynorthamerica.com/RXUK/RXUK _InfosecurityNorthAmerica/16.05-

16.30_Anki.pdf

Wiltz, Chris, Lessons After the Failure of Anki Robotics, Design News, 2019 May 21
https://www.designnews.com/electronics-test/lessons-after-failure-anki-
robotics/140103493460822

ANKI VECTOR - 2021.02.14 54

https://www.infosecuritynorthamerica.com/RXUK/RXUK_InfosecurityNorthAmerica/16.05-16.30_Anki.pdf
https://www.infosecuritynorthamerica.com/RXUK/RXUK_InfosecurityNorthAmerica/16.05-16.30_Anki.pdf
https://www.designnews.com/electronics-test/lessons-after-failure-anki-robotics/140103493460822
https://www.designnews.com/electronics-test/lessons-after-failure-anki-robotics/140103493460822

CHAPTER 7

Startup

This chapter describes Vector’s start up and shutdown processes:

22. STARTUP

The startup process

The shutdown steps

Vector’s startup is based on the Android boot loader and Linux startup.'® These are otherwise not
relevant to Vector, and their documentation is referred to. The boot process gets quite far before
knowing why it booted up or being able to response in complex fashion.

1.

The backpack button is pressed, or Vector is placed into the charger. This powers the body
board, and the head-board.

a. The body-board boot loader checks the application for validity, using a private key.
The application is run only if it passes the integrity checks.

The body-board displays an animation of the backpack LEDs while turning on.

a. Ifturned on from a button press and the button is released before the LED segments
are fully lit, the power will go off.

b. If the button is held down — for about 5 seconds — the head-board will have reach a
point in its boot process to direct the body-board to keep the battery switch closed.

c. If held for 15 seconds, the body-board will hold is TX line — the head-boards RX line
— low during the boot process. This tells the system to boot into recovery mode.

While the head-board boots, the body-board performs several self tests. These include
checking that the microcontroller can communicate with the 4 cliff (surface proximity)
sensors, and the time of flight sensor.

22.1. QUALCOMM'S PRIMARY AND SECONDARY BOOT-LOADER

Meanwhile, on the head-board:

1.

“Qualcomm’s Primary Boot Loader is verified and loaded into [RAM] memory™® from
BootROM, a non-writable storage on the SoC. [The primary boot-loader] is then
executed and brings up a nominal amount of hardware,”

The primary boot-loader checks to see if a test point is shorted on the board, the unit will
go into emergency download (EDL) mode. It is known that when F_USB pad on the
head-board is pulled to Vcc, USB is enabled; this may be the relevant pin.

'8 An ideal embedded system has a fast (seemingly instant) turn on. Vector’s startup isn ¢ fast. The steps to check the integrity of the
large flash storage — including checking the security signatures — and the complex processes that Linux provides each contribute to the
noticeable slow turn on time. Checking the signatures is inherently slow, by design.

*® The boot loader is placed into RAM for execution to defeat emulators.

Nolen Johnson

Roee Hay

ANKI VECTOR - 2021.02.14

55

3. Ifthe primary-boot loader is not in EDL mode it “then verifies the signature of the next Nolen Johnson
boot-loader in the chain [the secondary boot-loader], loads it, [and] then executes it.”
The secondary boot-loader is stored in the flash partition SBL.

4. If the secondary boot-loader does not pass checks, the primary boot loader will go into
emergency down load mode.

5. “The next boot-loader(s) in the chain are SBL*/XBL (Qualcomm’s Secondary/eXtensible
Boot Loader). These early boot-loaders bring up core hardware like CPU cores, the MMU,
etc. They are also responsible for bringing up core processes .. [for] TrustZone. The last
purpose of SBL*/XBL is to verify the signature of, load, and execute aboot/ABL [Android
boot loader].”

The TrustZone firmware is signed and verified against the processor’s unique key.
The Android boot-loader (aboot) is stored on the “ABOOT” partition.
The secondary boot-loader also supports the Sahara protocol; it is not known how to

activate it.
Note: The keys for the boot-loaders and TrustZone are generated by Qualcomm, with the root silicon-based
public key programmed into the hardware fuses before delivery to Anki or other customers. hardware key,

(This is called the silicon-based hardware key, or SHK.) The signed key pair for the secondary ~ Processor fuses

boot-loader, the TrustZone and for aboot are not necessarily the same signed key pair. They are
unique for each of Qualcomm’s customer. Being fuses, the SHK cannot be modified, even with
physical access. The SHK is only accessible to TrustZone firmware and its trustlets; keystores that
are encrypted and decrypted by the SHK must be to the TrustZone for processing.

22.2. ANDROID BOOT-LOADER (ABOOT)

1. “Aboot brings up most remaining core hardware then in turn normally verifies the signature
of the boot image, reports the verity status to Android Verified boot through dm-verity...
On many devices, Aboot/ABL can be configured to skip cryptographic signature checks and
allow booting any kernel/boot image.”

a. On other Android devices, aboot reads the DEVINFO partition for a structure. It Roee Hay
checks the header of the structure for a magic string (“ANDROID-BOOT!”) and
then uses the values within the structure to indicate whether or not the device is
unlocked, whether verity-mode is enabled or disabled, as well as a few other settings.
By writing a version of this structure to the partition, the device can be placed into
unlock mode.

Vector does not support this method of unlocking.

b. “The build system calculates the SHA256 hash of the raw boot.img and signs the Qualcomm LM80
hash with the user’s private key... It then concatenates this signed hash value at the ~ P0436
end of raw boot.img to generate signed boot.img.”

c. “During bootup, [Aboot®] strips out the raw boot.img and signed hash attached at the
end of the image. [Aboot] calculates the SHA256 hash of the complete raw boot.img
and compares it with the hash provided in the boot.img. If both hashes match, kernel
image is verified successfully.”

2. ABoot can either program the flash with software via boot loader mode, or load a kernel.
The kernel can be flagged to use a recovery RAM disk or mount a regular system.

% The Qualcomm document speaks directly about Little Kernel; ABoot is based on Little Kernel.

ANKI VECTOR - 2021.02.14 56

3. Ifrecovery mode, it will load the kernel and file systems from the RECOVERY partitions.

a. Recovery is entered if the active regular partition cannot be loaded, e.g. doesn’t
exist or fails signature check, or

b. The RX signal from the body-board may be held low when aboot starts,
indicating that the operator has held the button and wishes to initiate recovery
mode.?* If this is the case, “anki.unbrick=1" is prepended to the command line
passed to the kernel.

4. ABoot loads the kernel and RAM file system from the active “BOOT” partition and passes it
command line to perform a check of the boot and RAM file system the signatures.?? The
command line is stored in the header of the boot partition; it is checked as part of the
signature check of the boot partition and RAM file system. If the ABoot is compiled for a
developer robot, it will add an “anki.dev” to the command line.

Many of these elements will be revisited in Chapter 32 where updating aboot, boot, and system
partitions are discussed.

22.3. RECOVERY BOOT

The recovery system is, in part, based on an older version of Vector software.
USER DATA FILE SYSTEM. The recovery system does not use the user data file system. Here’s why:

1. The recovery system is risk averse. It is not updated (due to the risk), and has older
software. This software likely has bugs that could be a path for exploitation. By not using
the user data, the user data is protected against these exploits.

2. The user data may be corrupted, erased or gone. This may be the reason that the system in
recovery mode.

3. The files and formats of the user data, and the TrustZone key blobs may have changed with
newer formats and files. The recovery system might not be able to read them. Or it may
not be able to write something that the regular system can write.

FACTORY FILE SYSTEM. The recovery system normally mounts the factory file system (OEM
partition) in read only mode. It can be put into a “factory mode” (FAC) that remounts this file
system as a modifiable.

22.4. REGULAR SYSTEM BOOT

The boot partition holds the linux kernel, and a small RAM disk to initialize the system. Itis
passed parameters on the command line from aboot and from the boot.img. The purpose of the
extra (Anki-specific) command line parameters are:

Field Description Table 13: I!nux

command line
anki.unbrick This is used to trigger a boot into recovery mode. parameters
anki.dev This is set to confirm (to the linux system) that this robot is a development

robot and can run development software systems.

dm= The dm-verity command line used to verify the system file system

2! The body-board may body-board a resets/restarts the head-board so that the bootloader runs again.
22 The check specifies the blocks on the storage to perform a SHA256 check over and provides expected signature result.

ANKI VECTOR - 2021.02.14 57

After the kernel has finished loading, it launches init. In Vector, it is a shell script with Anki-
specific system checks:

() Figure 33: The linux
aboot N .
boot-partition init-script
v flow
Perform
RAMPOST
check of system
controller

Command
line has
“anki.dev’?,

Command
Yes line has
“dm="?
y
Set up dm-verity Tell RAMPOST
to cut power
A Y
Launch OS on Exit, halting
main partition head board

These Anki-specific system steps are:

1. The RAM file system contains primarily of two programs: init and /bin/rampost. init is a
shell script and the first program launched by the kernel. This script turns on the LCD, its
backlight and initiate communication with the body-board. (These occur ~6.7 seconds
after power-on is initiated).

a. rampost initializes the LCD, clearing the display. It also shows a start up screen on
the display of developer units.

b. rampost will perform a firmware upgrade of the body-board if its version is out of
date. It loads the firmware from syscon.dfu (Note: the firmware in the body-board is
referred to as syscon.)

c. rampost checks the battery voltage, temperature and error flags. It posts any issues to
/dev/rampost_error. See Appendix D Table 605: RAMPOST DFU status codes for
DFU related error codes.

d. All messages from rampost are prefixed with “@rampost.”

2. Next, init performs a signature check of the system partition to ensure integrity. This is
triggered by the command line which includes dm-verity options prefixed with “dm=". If
the system does not pass checks, init fails and exits.

a. Note: none of the file systems in fstab marked for verity checking, so this is the only
place where it is performed.

ANKI VECTOR - 2021.02.14 58

3. The main system file-system is mounted and launches the main system initialization.

The regular boot uses systemd to allow of the startup steps to be performed in parallel. The rough
start up sequence is:

1. Starts the Qualcomm Secure Execution Environment Communicator (dev-gseecom.device)
and ION memory allocator (dev-ion.device)

2. The encrypted user file system is checked and mounted (via the mount-data service). This
file system is where the all of the logs, people’s faces, and other information specific to the
individual Vector are stored. The keys to this file system are stored in a blob within
“switchboard” but are encoded and decoded by a TrustZone key manager (which uses the
processor’s secret key). This file system can only be read by the MPU that created it.

a. If“anki.unbrick” is on the command line, the user data partition is not touched;
instead a temporary file system is created and used instead.?® This flag is not
meaningful in the regular system since the boot-loader will only launch the recovery
partition software with “anki.unbrick”

b. If the data partition is empty (i.e., erased to clear the user data), the user data
partitions is formatted;

3. The MPU’s clock rate is limited to 533Mhz, and the RAM is limited to 400MHz to prevent
overheating.

4. The camera power is enabled
5. If Vector doesn’t have a robot name, Vic-christen is called to give it one.
6. After that several mid-layer communication stacks are started:

a. ush-service any time after that

b. the WiFi connection manager (connman)

c. The time client (chronyd), to retrieve network time. (Vector does not have a clock
that keeps time when turned off)

d. init-debuggerd
7. multi-user, sound, init_post_boot

8. The “Victor Boot Animator” is started (~8 seconds after power on) and shows the sparks
turning into the “V” splash screen on the display.

9. Victor Boot completes ~20.5 after power on, and the post boot services launches

10. The vic-crashuploader service is started to gather crash logs and dump files, some of which
may have been created during a previous boot attempt. These will be uploaded when
internet access is restored.

11. The vic-robot and main robot services are started.

12. Once the startup has sufficiently brought up enough the next set of animations the sound of
boot

2 I’m not sure how this would be useful as is with the regular system software. It seems like Vector could boot up, appear like
everything is wiped, and needs to be re-set up... then some time later, Vector would reboot, and appear to be his previous self —

including any misconfiguration that motivated the unbrick the first time.

ANKI VECTOR - 2021.02.14

13. VicOS is running ~32 seconds after power on. The boot is complete, and Vector is ready
to play

22.5. ABNORMAL SYSTEM BOOT

If there is a problem during startup — such as one of the services is unable to successfully start, a
fault code associated with that service is stored in /run/fault_code and the fault code displayed.
See chapter 33 for a description of the display of fault codes and diagnostics. See Appendix D for
fault codes.

22.6. REGULAR REBOOTS

Vector reboots nightly (if left on) and checks for software updates. See chapter 32 for information.

23. REFERENCES & RESOURCES

Android, Verified Boot
https://source.android.com/security/verifiedboot/

Bhat, Akshay; Secure boot on Snapdragon 410, TimeSys, 2018 Aug 23
https://www.timesys.com/security/secure-boot-snapdragon-410/

Discusses how one can get the source to the secondary boot-loader (SBL), the tools to sign it
and aboot using sectools

https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity

Hay, Roee. fastboot oem vuln: Android Bootloader Vulnerabilities in Vendor Customizations,
Aleph Research, HCL Technologies, 2017
https://www.usenix.org/system/files/conference/woot17/wootl7-paper-hay.pdf

Hay, Roee; Noam Hadad. Exploiting Qualcomm EDL Programmers, 2018 Jan 22
Part 1: Gaining Access & PBL Internals
https://alephsecurity.com/2018/01/22/qualcomm-ed|-1/
Part 2: Storage-based Attacks & Rooting
https://alephsecurity.com/2018/01/22/qualcomm-ed|-2/
Part 3: Memory-based Attacks & PBL Extraction
https://alephsecurity.com/2018/01/22/qualcomm-edI|-3/
Part 4: Runtime Debugger
https://alephsecurity.com/2018/01/22/qualcomm-ed|-4/
Part 5: Breaking Nokia 6's Secure Boot
https://alephsecurity.com/2018/01/22/qualcomm-ed|-5/

Johnson, Nolen; Qualcomm’s Chain of Trust, Lineage OS, 2018 Sept 17
https://lineageos.org/engineering/Qualcomm-Firmware/

A good overview of Qualcomm’s boot loader, boot process, and differences between versions
of Qualcomm’s process. Quotes are slightly edited for grammar.

Nakamoto, Ryan; Secure Boot and Image Authentication, Qualcomm , 2016 Oct
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-
technical-overview-v1-0.pdf

Qualcomm, DragonBoard™ 410c based on Qualcomm® Snapdragon™ 410E processor Little
Kernel Boot Loader Overview, LM80-P0436-1, Rev D, 2016 Jul
Im80-p0436-1_little_kernel_boot_loader_overview.pdf

https://github.com/ alephsecurity
A set repositories researching tools to discover commands in Sahara and EDL protocols

https://github.com/openpst
A set of repositories researching and implementing an interface to the Sahara protocol.

ANKI VECTOR - 2021.02.14

60

https://source.android.com/security/verifiedboot/
https://www.timesys.com/security/secure-boot-snapdragon-410/
https://gitlab.com/cryptsetup/cryptsetup/wikis/DMVerity
https://www.usenix.org/system/files/conference/woot17/woot17-paper-hay.pdf
https://alephsecurity.com/2018/01/22/qualcomm-edl-1/
https://alephsecurity.com/2018/01/22/qualcomm-edl-2/
https://alephsecurity.com/2018/01/22/qualcomm-edl-3/
https://alephsecurity.com/2018/01/22/qualcomm-edl-4/
https://alephsecurity.com/2018/01/22/qualcomm-edl-5/
https://lineageos.org/engineering/Qualcomm-Firmware/
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v1-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v1-0.pdf
https://github.com/%20alephsecurity
https://github.com/openpst

CHAPTER 8§

Power management

This chapter describes Vector’s power management:
= The battery management
= Load shedding

= Charger info

24. POWER MANAGEMENT

24.1. BATTERY MANAGEMENT

Vector does not employ a coulomb counter to track the remaining energy in the battery. The
batteries had too much variation to allow the capacity tracking to work well. At the broadest
strokes, the battery voltage is used to predict the battery state of charge.

24.1.1 Battery levels
Vector maps the battery voltage into a battery level, taking into account whether or not the charger
is active:
Figure 34: The battery
.| Filter battery level classification tree
Battery Voltage voltage

Connected?
unknown

On Charger?

Y
Apply charger Apply normal
thresholds for thresholds for
each level each level

»

>
BatteryLevel

ANKI VECTOR - 2021.02.14 61

Note: The battery voltage is filtered — the voltage will bounce around with activity by the motors,
driving the speaker and processors.

The BatteryLevel enumeration is used to categorize the condition of the Vector battery:

Name Value Description Table 14: "
BatteryLevel codes
BATTERY_LEVEL_FULL 3 Vector’s battery is at least 4.1V as they apply to
Vector
BATTERY_LEVEL_LOW 1 Vector’s battery is 3.6V or less; or if Vector is on the
charger, the battery voltage is 4V or less.
BATTERY_LEVEL_NOMINAL 2 Vector’s battery level is between low and full.
BATTERY_LEVEL_UNKNOWN 0 If the battery is not connected, Vector can’t measure its
battery.
The battery levels are organized conventionally:
4.2v BATTERY_LEVEL_FULL Figure 35: The battery
Any voltage at or above this threshold is thresholds
/

4.1v considered as a full battery

\ BATTERY_LEVEL_NOMINAL
When the voltage is in the range, Vector doesn’t
automatically seek the home (charger) or shutdown.

\ At and below this voltage, Vector begins seeking home
to charge

\ At and below this voltage, Vector performs a clean
shutdown, disabling motors, WiFi, the LCD display,
camera, etc.

~3.6v \ BATTERY_LEVEL_LOW
Any voltage at or below this threshold triggers an
immediate battery disconnect, turning the system off

The current battery level and voltage can be requested with the Battery State command (see
Chapter 15, section 51.2 Battery State). The response will provide the current battery voltage, and
interpreted level.

24.1.2 A software “fuel gauge”
It is typical for larger battery packs to include a coulomb counter, often called a fuel gauge. They
include it for a serious reason: it prevents fire and explosions that can result from overcharging a
large multi-cell pack. The fancy “fuel gauge” and estimated useful life is a bonus.

For Vector, a fuel gauge would given him smarts about knowing he will need to plan to return
home, or is getting low. His hardware doesn’t have a coulomb counter, for a variety of reasons.
Any effort, beyond simple battery voltage, to estimate the remaining play time would have to be
based on software and tracking the battery performance.

24.2. RESPONSES, SHEDDING LOAD / POWER SAVING EFFORTS

Vector’s main (power-related) activity modes are:

= active, interacting with others

= calm, where primarily sitting still, waiting for assistance or stimulation

2 The levels are from robot.py

ANKI VECTOR - 2021.02.14 62

= sleeping

Depending on the state of the battery — and charging — Vector may engage in behaviours that
override others.

BatteryLevel Figure 36: The

response to battery
Disconnect
battery

level

Level too low?

Low power mode,
cry for help

No

Queue high
priority task to
seek charger

If his power is low, Vector will launch a behavior to seek the charger out, and recharge. If he is
stuck, his behaviors will have him cry out.

If Vector is unable to dock (or even locate a dock) he sheds load as he goes into a lower state:

= He no longer responds to his trigger word or communicates with WiFi servers
= He turns off camera and LCD; presumable the time of flight sensor as well.
= He reduces processing on the processor

= Eventually the power will be turned off completely.

24.2.1 Temperature limits and related processing
The software tracks the temperature of the battery and head. As the temperature rises, more
aggressive actions are taken to protect the battery and let the chips cool down.

= Around 90C, Vector displays the overheating icon.

= If the body board is overheated, a flag in the HTTPS API RobotStatus bit mask is set (see
Chapter 15, section 44.1.2 RobotStatus Note: this is speculated, not proven.

= Atsome point past 90C, Vector starts a clean shut down (see earlier). The software in the
head is idle, and turns off as many peripherals (e.g. WiFi, display, etc.) with “the goal to
save enough power in the head to let the chip cool off, so we could continue driving
home.”

= Ifthe APQB8009 processor is hot, it will throttle its clocks. If the MP2617B charging chip
is reaching the thermal limits related to charging, it will throttle the charging.

ANKI VECTOR - 2021.02.14 63

24.2.2

24.2.3

24.3.

= |feither the body or head board exceeds a maximum temperature, the system is completely
shut down, and power is cut.

The battery overheated icon is displayed by vic-faultCodeDisplay, which has a hard coded path to
the icon:

/anki/data/assets/cozmo_resources/config/devOnlySprites/independentSprites/battery_o|

verheated.pngl

Version 1.6 uses very conservative thresholds (to protect the battery) with the intention of follow
up releases fine tuning the thresholds.

Calm Power mode

Vector has a high-level power mode called “calm power mode.” This mode “is generally when
Vector is sleeping or charging.” Vector [probably] turns off the sensors, lowers the CPU and
camera clock rate — or may even suspend the camera. (See Chapter 19, section 79.5 Illumination
level sensing for a description).

Whether Vector is in calm power mode (or not) is reported in the RobotStatus message in the status
field. (See chapter 15 for details.) Vector is in a calm power model if the
ROBOT_STATUS_CALM_POWER_MODE bit is set (in the status value).

When not moving
When Vector isn’t driving (or using his head and lift), he puts his motors and related sensors into a
low power state:

= The encoders are mostly turned off; they “pulsed at 1% duty cycle and watched for
changes” to detect someone moving Vector around;

= The time of flight sensor is turned to a lower sampling period

SLEEP STATES

Vector has variety of sleep states, based on his power level, what he can potentially do, and where
he is at. These include:

= Comatose

= Deepsleep

= Emergency sleep

= Asleep, but held in palm

= Asleep, on palm

= Asleep on charger

= Lightsleep

24.3.1 Sleep Debt

Vector “has a “sleep debt” system to make him get sleepier if he's been on longer as a way of
keeping the battery and electronics from overheating (it heats up with a lot of use, but after a few
seconds of sleeping can throttle down).”

Internally Vector tracks this as an amount of time he needs to sleep (sleep_debt_hours, a floating
point number). This increments with activity (and charging), and decrements (at a different rate)
when sleeping.

Brad Neuman

reddit post

ANKI VECTOR - 2021.02.14

64

24.4. ACTIVITY LEVEL MANAGEMENT

Version 1.5 slowed down a lot of Vectors activities (by lowering his max clock rate), to reduce
heat (prolonging the battery service life) and allow him to play longer between charge cycles.
Some of his behaviors were modified so that he doesn’t initiate exploring and playing as much,
choosing instead to stay on the charger longer until there was more signs that people were around
to play.

Version 1.6 may have gone further.

Behaviors are responsible for requesting that Vector enter a power saving or other sleep state.

24.5. SHUTDOWN

= Turning Vector off manually

= Vector turning off spontaneously due to brown-out or significant loss of power
= Vector turning off (under low power) by direction of the head-board

= Vector turning off if key software crashes

Vector cannot be turned off via Bluetooth LE, or the local HTTPS SDK access. There are no
exposed commands that do this. Using a verbal command, like “turn off” does not direct Vector to
shut off (disconnect the battery). Instead it goes into a quiet mode. Although it may be possible
for a Cloud command to turn Vector off, this seems unlikely.

However, there is likely a command to automate the manufacture and preparation for ship process.

2451 Turning Vector Off (intentionally)
When the system decides it needs to shutdown, it internally posts one of the following codes as the
reason for shutdown:

Table 15: Vector

Name Value Description& Notes
shutdown codes

SHUTDOWN_BATTERY_CRITICAL_TEMP 3 Vector shut down automatically because the battery

temperature was too high.
SHUTDOWN_BATTERY_CRITICAL_VOLT 2 Vector shut down automatically because the battery

voltage was too low.
SHUTDOWN_BUTTON 1 Vector was shut down by a long button press.
SHUTDOWN_GYRO_NOT_CALIBRATING 4 Vector shut down automatically because of an IMU

problem.
SHUTDOWN_UNKNOWN 0 Vector shut down unexpectedly; the reason is not

known. Likely a brown-out or battery voltage dipped
low faster than Vector could respond to.

The shutdown code is logged, and broadcast but not otherwise stored.

245.2 Unintentionally
The body-board is responsible for keeping the battery connected. However brownouts, self-
protects when the voltage get to too low, and bugs can cause the battery to be disconnected. The
body board will turn off power if it doesn’t hear from the head-board in a regular fashion. This
could be because of software crash.

ANKI VECTOR - 2021.02.14 65

2453

24.6.

25.

Going into an off state
When Vector wants to intentionally turn off, it cleans up its state to gracefully shutdown the linux
system and tells the body-board to disconnect the battery.

THE CUBE POWER MANAGEMENT

Vector manages the Cube’s power usage by managing the link. Vector disconnects from the cube
(saving the most power) when sleeping, or the cube is not used by the behavior tree. When
connected to the cube, higher and lower update rates are selected, based on the active behavior and
the kind of interaction. Since higher update rates consume more power, Vector only employs them
if there is an indication that someone is moving or tapping the cube. Lower update rates are used
to detect the possibility of interaction, such as motion. See chapter 14 for more information.

CHARGING

Vector tracks whether is charging is in process, and how long. The software has some initial
estimates how long before charging is complete. This is similar to the software “fuel gauge.” It
takes some model of the batteries capacity, and typical charging times given that.

The state of the charger is reported in the RobotStatus message in the status field. (See chapter 15
for details.) Vector is on the charger if the ROBOT_STATUS_IS_ON_CHARGER bit is set (in the status
value), and charging if the ROBOT_STATUS_IS_CHARGING bit is set.

Version 1.5 slowed down the charging, to reduce heat, prolonging the battery life.

Additional information about the state of the charger can be requested with the Battery State
command (see Chapter 15, section 51.2 Battery State). The response will provide flags indicating
whether or not Vector is on the charger, and if it is charging. The response also provides a
suggested amount of time to charge the batteries.

ANKI VECTOR - 2021.02.14

66

CHAPTERY9

Basic Inputs and

Outputs

This chapter describes Vectors most basic input and output: his button, touch and LEDs:
= Touch and button input
= Backpack Lights control

Note: the audio sampling will be covered in a later chapter (Chapter 18)

26. BUTTON, TOUCH AND CLIFF SENSOR INPUT

Vector’s backpack button is used to wake (and silence) Vector, or to place him into recovery mode.
Touch is used to pet Vector and provide him stimulation. Four surface proximity IR sensors are
used to detect cliffs and line edges. The responsibility for the button, touch, and proximity sensor
input functions are divided across multiple processes and boards in Vector:

T Figure 37: The touch
p N ‘~® and button input
Vic-Robot » Vic- _° _ | PythonsDK architecture
Vic-Spine Vi Gateway]~ q applications
L x)
UART
ADC
GPIO
Surface d d
Proximity B
Sensors
Time of -
Flight 12c =

The states of the inputs (button, touch, surface proximity and time of flight sensors) are reported in
the RobotStatus message. (See chapter 15 for details.) The button state can be found in the status
field. The button is pressed if the ROBOT_STATUS_IS_BUTTON_PRESSED bit is set (in the status
value).

The surface proximity sensors (aka “cliff sensors™) are used to determine if there is a cliff, or cliff sensors
potentially in the air. The individual sensor values are not accessible. The cliff detection state

can be found in the status field. A cliff is presently detected if the

ROBOT_STATUS_CLIFF_DETECTED bit is set (in the status value).

ANKI VECTOR - 2021.02.14 67

26.1. TOUCH SENSING INFORMATION

The touch sensor is driven by the body-board, and the sample values are processed in the head-
board. The sensors samples are filtered, to get a sense of the current “level” the sensor is at. A
standard deviation is used as a measure of how solid the signal, to help distinguish between a real
signal and ambient conditions like humidity and weather. These two measures — along with a
timer to screen out transitory noise — can be used to decide that Vector is being touched or not.

Figure 38: The touch
sensor and petting
detector

Touch S Threshold &
Sensor | »| Fitering =¥ e

These measures could potentially distinguish between light touch (e.g. tip of the finger), heavy
touch (e.g. a full palm?), and perhaps even changing touch.

The touch sensor readings can be found in the touch_data field of the RobotStatus message. The
values indicate whether Vector is being touched (e.g. petted).

The touch sensor module produces a JSON structure for internal use:

Table 16: Touch sensor

Field Type Units Description
structure
max float The maximum value seen
min float The minimum value seen
stddev float The standard deviation
26.2. TIME OF FLIGHT PROXIMITY SENSOR
The time of flight reading is given in the prox_data field. This indicates whether there is a valid
measurement, the distance to the object, and a metric that indicates how good the distance
measurement is. This will be processed by the mapping system. See Chapter 20 section 89
Measuring the distance to objects.
27. BACKPACK LIGHTS CONTROL
The backpack lights are used to show the state of the microphone, charging, WiFi and some other
behaviours. (It is also used to show unusual error states.)
—_—— Figure 39: The
Vic-anim backpack lights output
I architecture
Vic-Robot
Vic-Spine
UART
\ 4
Body-Board > LEDs
SPI-like

The software can direct the body-board to illuminate the backpack lights with individually
different colors and brightness’s. The body-board “pulse width modulates” (PWM’s) the LEDs to
achieve different colors and intensities.

ANKI VECTOR - 2021.02.14 68

The body-board doesn’t directly interface with the LED’s (they’re connected to a logic chip on a
separate board), so it cannot delegate the work to an internal PWM peripheral. The body-board
must implement its PWM in firmware, and send the GPIO states to the backpack every time there
is a change. (See Chapter 4, section 10.3.1 The LED controls)

Figure 40: The

PWM4

PWM1
firmware driving of the
o LEDs
PWM2
Octet 74AHC164 [—)
PWM3 e

The basic logic to drive the LEDs is:
1. Select LEDs for the time slice
2. Get the LED bit settings from the PWM(s)
3. Organize these into a format for the 74AHC164
4. Send the bits to the 74AHC164

5. Delay until the next time slice, and repeat

ANKI VECTOR - 2021.02.14 69

CHAPTER 10

Inertial Motion

Sensing

This chapter describes Vector’s motion sensing:
= Sensing motion and cliffs
= Detecting external events

= Measuring motion as feedback to motion control, and allow moving along paths in a
smooth and controlled fashion

28. MOTION SENSING

Vector employs an IMU — an accelerometer and gyroscope in the same module — to detect motion,
such as falling or being bumped, as well as measuring the results of motor-driven motions.

Eal Figure 41: Sensing
; a .
IMU » IMU Filter » Detector motion events
Fist-Bump
> Detector
Poke
> Detector
Being Held
> Detector
Cliff «| Pick Up/ In-
Sensors ™| Air Detector

28.1. ACCELEROMETER AND GYROSCOPE

Neither the accelerometer nor gyroscope by itself is sufficient to accurately measure change in
position and orientation. Accelerometers measure force along 3 (XYZ) axes, including gravity.
The accelerometer provides the orientation — if there is no other motion. The drawback is that
accelerometers cannot correctly measure spins, and other rotations from other movements.
Gyroscopes can measure rotations around the axes, but cannot measure linear motion along the
axis. Gyroscopes also have a slight bias in the signal that they measure, giving the false signal that
there is always some motion occurring.

By blending the accelerometer and gyroscope signals together, they can compensate and cancel
each other’s weaknesses out.

ANKI VECTOR - 2021.02.14 70

High pass Numerical Figure 42:
filter) integration | Displacement Complementary
filtering of the
accelerometer and
Acelerometer ' Lomt[;?ss > > Angle gyroscope
Numerical High pass
»)
CYlcsenpe "1 integration filter

| Angular
Velocity

28.2. TILTED HEAD

The IMU can also measure how tilted Vector’s head is. The IMU is located in Vector’s head. This
presents a small extra step of processing for the software to accommodate the impact of the head.
By combining the position & orientation of the IMU within the head, the current estimated angle of
the head, the known joint that the head swivels on, and working backwards the IMU measures can
be translated to body-centered measures.

28.3. SENSING MOTION

The IMU’s primary function is detect motion — to help estimate the change in position, and
changes in orientation of Vector’s body, and how fast it is moving.

The IMU can be used to detect the angle of Vector’s body. This is important, as the charging
behaviour uses the tilt of the charging station ramp to know that it is in the right place.

28.4. SENSING INTERACTIONS

The IMU (with some help from the cliff sensors) is also used to sense interactions and other
environmental events — such as being picked up or held by a person, being poked or given a fist
bump, or falling.

Figure 43: Classify
Acelerometer »| Filterbank |l »f Classifier movement by filtering
y the accelerometer and
gyroscope signals
Gyroscope »{ Filter bank

| S—

By using combinations of high, low pass, and band filters, and looking for signature patterns,
Vector identify the kinds of physical interactions that are occurring.

The taps and pokes may tilt Vector, but will also provide a “frequency” response to the signals that
can be used to trigger on. The movement will change his position quickly and slight in small
distance, but Vector will resume his prior position very quickly. N

Fist-bumps are like pokes, except that the lift has already been raised, and most of the frequency T\

response and motion will be predictable from receiving the bump on the lift. k NS NS
N |
"© o

ANKI VECTOR - 2021.02.14 71

Fall detection is similar. In free-fall, the force measured by the accelerometer gets very small. If N
Vector is tumbling, there is a lot of angular velocity that is taking Vector off of his driving surface. | o '
hg.. '

Being picked up is distinct because of the direction of acceleration and previous orientation of
Vector’s body.

Being held is sensed, in part by first being picked up, and by motions that indicate it is not on a
solid surface.

A similar set of interaction sensing is present with the cube. It can sense that it is being tapped (or
double tapped), picked up, and held. See Chapter 21.

Patent filings (e.g. WO 2019/173321 indicates that Anki had ideas of how this could be extended
to detect riding in a car, and even estimating how fast it is moving.

29. REFERENCES AND RESOURCES

AdaFruit, https://github.com/adafruit/Adafruit 9DOF/blob/master/Adafruit 9DOF.cpp
An example of how accelerometer and gyroscope measurements are fused.

Anderson, Ross Robot Transportation Mode Classification, Anki, WIPO WO 2019/173321 Al,
2019 Sept 12

ANKI VECTOR - 2021.02.14 72

https://github.com/adafruit/Adafruit_9DOF/blob/master/Adafruit_9DOF.cpp

PART III

Communication

This part provides details of Vector’s communication protocols. These chapters describe structure
communication, the information that is exchange, its encoding, and the sequences needed to
accomplish tasks. Other chapters will delve into the functional design that the communication
provides interface to.

= COMMUNICATION. A look at Vector’s communication stack.
= COMMUNICATION WITH THE BoDY-BOARD. The protocol that the body-board responds to.

= VECTOR’S BLUETOOTH LE CoMMUNICATION PROTOCOL. The Bluetooth LE protocol that
Vector responds to.

= CuBE’s BLUETOOTH LE COMMUNICATION PROTOCOL. The Bluetooth LE protocol that the
companion cube responds to.

= SDKPRroTocoL. The HTTPS protocol that VVector responds to.

= WEB-VISUALIZATION PROTOCOL. The web-sockets protocol(s) that VVector provides for
debugging in development builds.

= CLoup. A look at how Vector interacts with remote services

drawing by Jesse Easley

ANKI VECTOR - 2021.02.14 73

[This page is intentionally left blank for purposes of double-sided printing]

ANKI VECTOR - 2021.02.14 74

CHAPTER 11

Communication

This chapter describes the system of communication system with the devices internal and external
to Vector:

= Internal communication with the body-board, and internal peripherals
= Bluetooth LE: with the Cube, and with the application
= WiFi: with the cloud, and with the application

= Internal support

OVERVIEW OF VECTOR'S COMMUNICATION INFRASTRUCTURE

A significant part of Vector’s software is focused on communication:

30.

= Internal IPC between processes
= Communication with local peripherals and the body-board processor
= Communication with external accessories and applications.

From a high-level, the communication stacks look like:

Figure 44: The overall

Application communication
Cloud infrastructure
) -
|
|
Ir _| Python SDK
| Serial LCD Bluetooth Wifi Stack | CTEENRITE
| Console | [iMU stack [
r————- 1 | Body Board: T — | . I
| USB Motors, LEDs oo b Offb(é?]rgiir:;lsmn I
- & sensors ° I |
| P
I L .
itttk Mobile App

ANKI VECTOR

- 2021.02.14

75

31.

31.1.

31.2.

31.3.

32.

INTERNAL COMMUNICATION WITH PERIPHERALS

The communication stack within the software is one part Linux, one part Qualcomm, and a big
heaping dose of Anki’s stuff.

COMMUNICATION WITH THE BODY-BOARD

The head board communicates with the body board using a serial interface. The device file is
/dev/ttyHSO0.

SERIAL BOOT CONSOLE

usB

The head-board employs a serial port to display kernel boot up and log messages. The
parameters are 115200 bits/sec, 8 data bits no parity, 1 stop bit; the device file is /dev/ttyHSLO.
This serial port is not bi-directional, and can not be used to login.

There are pins for USB on the head board. Asserting “F_USB” pad to VCC enables the port.
During power-on, and initial boot it is a Qualcomm QDL port. The USB supports a Qualcomm
debugging driver (QDL), but the readout is locked. It appears to be intended to inject software
during manufacture.

The /etc/initscriptsusb file enables the USB and the usual functionfs adb. It lives in
/sbin/usr/composition/9091 (I think, if I understand the part number matching correctly). This
launches ADB (DIAG + MODEM + QMI_RMNET + ADB)

Vectors log shows the USB being disabled 24 seconds after linux starts. It is enabled only on
development units.

BLUETOOTH LE

Bluetooth LE is used for two purposes:

1. Bluetooth LE is used to initially configure Vector, to reconfigure him when the WiFi
changes; and to pair him to with the companion cube accessory. Potentially allows some
diagnostic and customization.

2. Bluetooth LE is used to communicate with the companion Cube: to detect its movement,
taps, and to set the state of its LEDs.

Melanie T

Melanie T

ANKI VECTOR - 2021.02.14

76

Vector’s Bluetooth LE stack looks like:

- Figure 45: The
e Bluetooth LE stack
Switchboard

1
Cube library
libcubeBleClient
L

libanki-ble

/data/misc/bluetooth/abtd.socket

ankibluethd

/data/misc/bluetooth/btprop

Bluez

Qualcomm
Bluetooth LE

3

The elements of the Bluetooth LE stack include:

Table 17: Elements of

Element Description & Notes
the Bluetooth LE stack

ankibluetoothd A server daemon. The application layer communicates with it
over a socket;
/data/misc/bluetooth/abtd.socket

BlueZ Linux’s official Bluetooth stack, including Bluetooth LE support.
The Anki Bluetooth daemon interacts with it over a socket:
/data/misc/bluetooth/btprop

bcemd A Bluetooth core command
btmon A command-line Bluetooth tool
libanki-ble.so Communicates with Anki Bluetooth daemon probably serves both

the external mobile application interface and communication with
the companion cube.

libcubeBleClient.so” A library to communicate with the companion cube, play
animations on its LEDs, detect being held, taps and the cube’s
orientation.

viccubetool Probably used to update the firmware in the Cube.

% The library includes a great deal of built in knowledge of the state of application (“game engine”), animations, and other elements

ANKI VECTOR - 2021.02.14 77

33. WIFI

WiFi networking is used by Vector for six purposes:

1. WiFiis used to provide the access to the remote servers for Vector’s speech recognition,
natural language processing

2. WiFi is used to provide the access to the remote servers for software updates, and
providing diagnostic logging and troubleshooting information to Anki

3. To provide time services to so that Vector knows the current time

4. To provide an interface, on the local network, that the mobile application can use to
configure Vector, and change his settings.

5. To provide an interface, on the local network, that SDK applications can use to program
Vector.

6. To provide interfaces, on the local network, that allow development Vectors (special
internal versions) to be debugged and characterized

The WiFi network stack looks like:

Figure 46: The WiFi
Vic-Cloud stack
——
! S
Vic-Gateway
libvictor_web_libray
. . ! S
libcubeBleClient Vie-
- | Switchboard
Civet Webserver -
libcivetweb
Avahi mDNS
server
Connman
/net/connman/service/wifi_..._managed_psk
Qualcomm
WiF
L g
]

The elements of the stack include:?

Table 18: Elements of

Element Description & Notes
the Bluetooth LE stack
avahi 0.6.31 A mDNS server that registers Vector’s robot name (with his
network address) on the local network;
chronyd Fetches the time from a network time server.
libcivetweb.s0.1.9.1 Embedded web server

libvictor_web_Llibrary.so Anki Vector Web Services.

% Al of the software versions include an Anki webserver service systemd configuration file whose executable is missing. The most
likely explanation is that early architecture (and possibly early versions) included this separate server, and that the systemd
configuration file is an unnoticed remnant.

ANKI VECTOR - 2021.02.14 78

33.1. FIREWALL

The network configuration includes a firewall set up with the usual configuration files:

/etc/iptables/iptables.rulesiptables
/etc/iptables/ip6tables.rulesiptables

Is set to block incoming traffic (but not internal traffic), except for:
1. Responses to outgoing traffic
2. DHCP
3. TCP port 443 for vic-gateway
4. UDP port 5353 for mDNS (Avahi)
5. And the ping ICMP

In developer builds the firewall also allows:
1. SSH access
2. Android Debugger (ADB) over TCP access
3. “Web-viz” access, which has web-server / websockets / webdav ports
4. Webots support
5. WWise profiler support

The firewall does not block outgoing traffic

33.2. WIFI CONFIGURATION

The WiFi is configured by the Vic-switchboard over Bluetooth LE. The WiFi settings cannot be
changed by the remote servers or thru the WiFi-based API; nor is information about the WiFi
settings is not stored remotely.

The WiFi is managed by connman thru the Vic-Switchbox:
= To provide a list of WiFi SSIDs to the mobile app
= To allow the mobile app to select an SSID and provide a password to
= Tell it forget an SSID
= To place the WiFi into Access Point mode

The connman settings — files for accessing known WiFi access points — are stored on the encrypted
file-system /data, in the folder:

|/data/lib/connman]|

The path is hard-coded into connman itself. This folder is created (if it doesn’t exist) by mount-
data when it sets /data up for the robot (such as when it is new or has had its user data erased via
the “Clear User Data” menu). The contents of /var/lib/connman are copied here with each system
start.

ANKI VECTOR - 2021.02.14

33.3.

34.

34.1.

34.11

ACCESS POINT MODE

Vector can acted as a wifi access point, instead of connecting to a router. This was primarily
intended to ease development of Vector. With the OpenSource Kit this is more useful. Vector can
be put into access point mode by issuing a command over the Bluetooth LE channel.

NETWORK COMMUNICATION

COMMUNICATING WITH MOBILE APP AND SDK

Vector’s robot name is something that looks like “Vector-E5S6”. This name is used consistently;

it will be Vector’s:

= advertised Bluetooth LE peripheral name (although spaces are used instead of dashes)

= mDNS network name (dashes are used instead of spaces),

= the name used to sign certificates, and

= it will be the name of his WiFi Access Point, when placed into Access Point mode

Certificate based authentication

A certificate is generated by Vector for use with the HTTPS API and vic-gateway. The certificate
allows the mabile application and SDK-based application to validate that they are talking to the
robot that they think they are. This is optional: the applications don’t need to use it, if they do not
wish to. So what are certificates?

“Certificates can be thought of as policy documents. Any X.509 certificate consists of

“a public key,

“an indication who the certificate was issued for,

“what actions the authority allows the certificate holder to perform,
“the date the certificate is first valid on,

“the date the certificate expires on,

“metadata about how to check if the certificate has been revoked (optional, but highly
recommended),

“the authority who issued the certificate, and

“a signature across all this metadata, from the authority.”

The certificate is created by the vic-gateway-cert.service (which in turn calls the /sbin/vic-
gateway-cert script) at start-up, after the “factory reset.” When the user data is cleared, the old
certificates and robot name are cleared as well. Vector is assigned a new robot name when the
system restarts (after clearing), and then creates a new certificate.

The certificate is stored on the robot at:

|/ data/vic-gateway/gateway.cert]

The path is hard-coded into both vic-cloud and vic-gateway. Vector posts the certificate to the
cloud servers using vic-cloud. The mobile application and SDK-based applications receive the
certificate from these servers.

ANKI VECTOR - 2021.02.14

Phil Vachon

80

Figure 47: The
vic-cloud » Anki Cloud certificate flow from
x the robot to the mobile
application
Y
vic-gateway-cert i
gservicg »| gateway.cert SDMKO;)SEIQEEM

The following is

a synopsis of the files and scripts involved with the API certificate:

File

Table 19: The files,

Description .
scripts and programs

/anki/etc/vic-gateway-cert.env
/data/etc/robot.pem

/data/vic-gateway/gateway.cert

/etc/systemd/system/vic-gateway-
cert.service

/etc/vic-gateway-cert.conf.in
/sbin/vic-gateway-cert
vic-cloud

vic-gateway

Holds the fault code if the vic-gate-cert.service fails. involved with the API
. . certificate
The private key is generated after a factory reset by mount-data.

The certificate used by the mobile application and SDK apps to validate the
authenticity of the robot.

The startup service responsible for creating the certificate (if there isn’t one
already)

The template (default field values) used in creating the certificate.
The script that creates the certificate
Posts the certificate to the cloud

Uses the robot.pem as the private key for TLS communication with the mobile
application and SDK.

This certificate is intended to be added to the trusted SSL certificates store before a HTTPS
communication session. The certificate issued by Vector is good for 100 years. The following is
information typically embedded in a Vector certificate:

Element

Table 20: Elements of

Value o
a Vector certificate

Common Name Vector’s robot name

Subject Alternative Names Vector’s robot name

Organization
Locality
State
Country
Valid From
Valid To
Issuer

Serial Number

Anki

SF

California

us

the date the certificate was created

100 years after the date the certificate was created

Vector’s robot name, Anki

ANKI VECTOR - 2021.02.14 81

34.1.2 Token
A session token is provided by Anki servers®” to the mobile application and HTTPS-based SDK
application. This token is required to by the robot to validate that they application is talking to has
authenticated itself as an owner.

Figure 48: Sequence for

App Vector Server
M) acquiring a client token

Name & password

Session Token

Session Token

Client Token

—

When the application(s) receive the session token from the server, they must pass it to Vector via
the Bluetooth LE RTS protocol or the HTTPS SDK protocol. The process to is generated it is
initiated in one of two ways. One method is by the Bluetooth LE command (section 40.9 Cloud
session); the other is by send a User Authentication command (see Chapter 15 section 52.5 User
Authentication). Vector will return a client token. (The session token is single use only.) The
application(s) should save this client token for future uses (it can be used indefinitely).

Vector stores information about the session and client tokens in a file at:

|/ data/vic-gateway/token-hashes. json|

This file has a single structure with the following fields:

Table 21: The token

Field Type Description
hashes structure

client_tokens ClientToken[] The array of client tokens.

The ClientToken structure has the following fields:

Table 22: The

Field Type Description)
ClientToken structure

app_id string This is the name given by an application using the API. Common ones
include “companion-app” for the mobile application, and “SDK” for the
python SDK based authentication. Optional.

client_name string The name of computer requesting the client token. Optional.
hash base64 string

is_primary bool Unknown This is always false.

issued_at string The date-time that the hash / client token was created

34.2. WEB-VIZ, A VISUAL CHARACTERIZATION TOOL

Development builds of VVectors software include an optional web-sockets API and web-
visualization (webviz) tool. This feature is not present in the production releases, nor many of the
development releases. With this tool has some of the vic-server processes provide an HTTP web-
server, and web socket over it:

%" https://groups.google.com/forum/#!msg/anki-vector-rooting/Y1Y QsX080D4/fvk AOZ91CgAl
https://groups.google.com/forum/#!msg/anki-vector-rooting/ X AaBE6e94ek/OdES50PaBQAJ

ANKI VECTOR - 2021.02.14 82

https://groups.google.com/forum/%23!msg/anki-vector-rooting/YlYQsX08OD4/fvkAOZ91CgAJ
https://groups.google.com/forum/%23!msg/anki-vector-rooting/XAaBE6e94ek/OdES50PaBQAJ

35.

Port Description

8887 The webserver built into vic-webserver
8888 The webserver built into vic-engine
8889 The webserver built into vic-anim
8890 Not used

The web-sockets provide access to internal variables and other software state. In some cases
provide points of control. The web-server, esp thru the webdav support, allows files to be
downloaded and uploaded into Vector. This includes the ability to add animation files that can be

tested.

Note: the tool is rumoured to be consume a lot of resources, causing unusual faults to occur on
Vector. It has a small overlap with the functions can be taken via the SDK interface.

CLOUD SERVERS

The cloud servers are used for natural language processing, storing settings, tracking diagnostic

information, and software updates.

For natural language processing, the audio stream (after the “Hey Vector”) is sent to a group of
remote servers for processing. The functions are divided up across several different servers which

— — »{ JDocs server

Chipper
Handoff

A
y

Lex
Automatic Speech
Recognition &
Language
understanding

»

Houndify
Automatic Speech
Recognition &
Knowledge Q&A

IBM Weather
Weather related
Q&A

can provide specialized services:

Server

Description

Chipper
Houndify

IBM Weather

Lex

Chipper is a server that that hands off the audio processing.

The “knowledge graph” Q&A server is handled by Sound Hound
(Houndify). Note: the speech is sent to Houndify only if Lex is unable to

handle the query.

IBM handles the Weather related questions.

Lex handles most of VVectors speech recognition, natural language
understanding, return an intent. (This is discussed a bit more in Chapter
18) The “I have a question” queries are handed off to Houndify. This

server is hosted by AWS.

ANKI VECTOR

Table 23: Web-viz
HTTP & web-socket
server ports

Figure 49: The cloud
servers

Table 24: Natural
language processing
servers

-+ 2021.02.14 83

Chapter 17 describes the communication with these servers, including the responses that they send
back.

Chapter 18 describes typical natural language processing, and the processing of intents.

35.1. ROBOT CERTIFICATE

Each Vector has supporting TLS certificates and signing keys are stored in the OEM partition,
located in the /factory/cloud folder:

Table 25: OEM cloud

File Description
folder

AnkiRobotDeviceCert.pem The certificate used
AnkiRobotDeviceKeys.pem The private key used
Info$(serialNum}.json A configuration file that

${serialNum} empty

The Info${serialNum}.json file has the following structure:

Table 26: Cloud

Field Type Description

yp P Info${serialNum}
CertDigest base64 string structure
CertSignature base64 string
CertSignatureAlgorithm string The name of openSSL signature algorithm to use,

“sha256WithRSAEnNcryption”

CommonName string ‘vic:” followed by the serial number. (This is also called the
“thing id” in other structures.

KeysDigest base64 string

36. REFERENCES & RESOURCES

PyCozmo.
https://github.com/zayfod/pycozmo/blob/master/docs/protocol.md
https://github.com/zayfod/pycozmo/blob/master/pycozmo/protocol_declaration.py

Vector has a couple UDP ports open internally; likely this is inherited from libcozmo_engine.
The PyCozmo project has reverse engineered much of Cozmo’s UDP protocol.

Vachon, Phil Application Trust is Hard, but Apple does it Well — Security Embedded
https://www.security-embedded.com/blog/2020/11/14/application-trust-is-hard-but-apple-
does-it-well

ANKI VECTOR - 2021.02.14 84

https://github.com/zayfod/pycozmo/blob/master/docs/protocol.md
https://github.com/zayfod/pycozmo/blob/master/pycozmo/protocol_declaration.py
https://www.security-embedded.com/blog/2020/11/14/application-trust-is-hard-but-apple-does-it-well
https://www.security-embedded.com/blog/2020/11/14/application-trust-is-hard-but-apple-does-it-well

CHAPTER 12

Body-board
Communication

Protocol

This chapter describes Vector’s body-board communication protocol.
= The kinds of activities that can be performed
= The interaction sequences

= The communication protocol stack.

37. COMMUNICATION PROTOCOL OVERVIEW

Communication with the body-board, once established, is structured as a request-response protocol
and a streaming data update. The data of the messages was packaged using an proprietary tool
called “C-Like Abstract Data structures” (CLAD) that made it easy for Anki to define message
structures — fields and values in a defined format — and generate code to encode and decode them.

The messages from the head board to the body-board have the content:
= Checking that the application firmware is running and its version

= Boot-loader updates to the firmware: Entering the boot-loader, erasing flash, writing a new
application, and verifying it

= The 4 LED RGB states

= Controls for the motors: possible direction and enable; direction and duty cycle; or a target
position and speed.

= Power control information: disable power to the system, turn off distance, cliff sensors, etc.
In turn, the body board messages to the head-board can contain (depending on the type of packet):

= The touch sensor ADC value, and state of the backpack button
= The microphone samples for all 4 microphones. (Most likely as 16 bits per sample)
= The battery voltage,

= The charging terminal voltage

State of the charger — on docked, charging, battery critically low
= The temperature of the charger/battery

= The state of 4 motor encoders, possibly as encoder counters, possibly as 10 state

ANKI VECTOR - 2021.02.14

85

= The time of flight readings, these are used to reconstruct histogram counts and SPAD
reflectivity measures.

= The values from each of the 4 cliff proximity sensors

= Which peripherals are enabled and disabled (powered down)

37.1. BASIC STRUCTURES
The data structures passed between the head and the body are packaged as frames:

Figure 50: Overview of

a) _ the body-board frames
< :
| @ Data
O g8
> ©
=l
o)
£
g Payload
o ayloa
(I -1 N e o
Q)
Q| XN o
IT|IFWn (8]

THE RS232 SERIAL LINK is the used as the transport. It handles the delivery of the bytes between
the body board and the head board. The data rate: 3 Mbits/sec?®

THE FRAME identifies the start and end of a message, includes the message itself and error
detection. It also includes the kind of CLAD message that is contained.

THE C-LIKe ABSTRACT DATA (CLAD) is the layer that decodes the messages into values for fields,
and interprets them.

TimeouTs. The body-board maintains a timer to detect the loss of communication from the head-
board — perhaps from a software crash. If the body-board does not receive communication within
sending 200 Data Frame messages, it will turn off power.

37.2. THE MESSAGE FRAMES

To transport the messages between the head and body boards, there is a framing layer. This holds
the messages:

Figure 51: The format of

a frame
g Payload
588 g
I w0 O

When the head-board sends messages to the body-board, the header is:
AAg H® 2’ B’

The body-board sends messages in response to commands, and at regular intervals to the head-
board. The header of a message is:

AAj B’ 2 ‘H’

% Value from analysis of the RAMPOST, vic-robot, and dfu programs.

ANKI VECTOR - 2021.02.14 86

37.3.

37.4.

The rest of the frame:

= The payload type is 16 bits. The packet type implies both the size of the payload, and the
contents. If the packet type is not recognized, or the implied size does not match the
passed payload size, the packet is considered in error.

= The payload size is a 16 bit number. The maximum payload size is 1280 bytes.
= The CRC is 32 bits. It is computed on the payload only.

The tag and CLAD payload are passed to the application for interpretation.

ACKNOWLEDGEMENT AND NEGATIVE ACKNOWLEDGEMENT OF MESSAGES

Sends a message to the body-board. If the message doesn’t pass CRC checks, or the command is
not recognize, the body-board sends a NAK.

Head-Board Body-Board Figure 52: Body-board
NAK a CRC-error or bad
Command
> command
» NAK

Otherwise it may attempt to carry out the command, and it may send back an ACK or other
response on success... or a NAK on error.

UPDATING THE FIRMWARE APPLICATION

The head-board can update the firmware in the body-board, by putting it into DFU (device
firmware upgrade) mode and downloading the replacement firmware image. If the head-board
application decides to download a (new) application to the body-board — for instance, if the version
is out of date — it does so with a sequence like:

Figure 53: Sequence for

Head-Board Body-Board
M) M) updating the body-board

Version request

Version response
DFU mode
g ACK

File download

File download

737446

1. Checking the version. Compares this with the version of the latest file.
2. It sends the 7878, command to erase the current application
3. It sends a serial sequence of the application data using the 6675,5 command.

4. Then the 7374, command is sent to validate the command (including checking its
authenticity using a digital signature), and start the application.

5. The boot-loader sends the results of the check in a 6B61,¢ response. The head-board
application check results, then if successful,

ANKI VECTOR - 2021.02.14 87

6. It waits for message frames from the body-board application.

37.4.1 The format of the firmware update file
The first 16 bytes of the firmware update files holds the version. This is used only for comparing
versions. Itis not sent. The remainder of the file holds the application firmware. The following
summarizes where the application firmware is placed into the STM32F030 program memory:

Figure 54: The
STM32F030 program

0x0800 0000: Bootloader memory map

STM32F030 Program Memory

Version
16 bytes 0x0800 2000: Application Control Block

0x0800 2020: Unknown

0x0800 2118: Application Entry

0x0800 211C: Application Version

Application
firmware 0x0800 212C-: Application

0x0800 57xx: Application Vector Table

0x0800 5800-: Application

___»{0x0800 FFFF :

Note: I don’t know what points to the vector table.

37.5. COMMAND-LINE INTERFACE

The body-board has a bidirectional serial interface for test purposes. This is located on the charger
positive pad. The single connection is half-duplex — it is used to both send and receive. The data
rate is 115.2 Kbits/sec.

Note: this communication is only implemented in DVT firmware; it is not implemented in
production firmware. It is not known how to put the DVT firmware into this mode.

When the body board powers on it sends a few header bytes and a string:
FF16 9216 1F 15 CF16 FF16 FF16 FF15 FF16 “\\nbooted\n”

Thereafter body-board can receive characters from this interface and forward them with the 63644
message to the head-board for processing by vic-robot.

1. vic-robot receives these characters, and buffers them. When it sees a new line or carriage
return, it examines the line. If the line starts with a ‘>’ and is followed by a valid 3-letter
command, it will carry out the command. This may include reporting sensed values,
writing the factor calibration values or EMR.

2. If vic-robot wishes to send text, via the body-boards outgoing serial port, it uses the 63644
command to send the text characters to the body-board, which then sends them out the
charger port.

The text commands from this port are that vic-robot recognizes are:

= esn
= bsv
. mot

ANKI VECTOR - 2021.02.14 88

get
fcc
rlg
eng
smr
gmr
pwr
led

38. MESSAGE FORMATS

This section describes the format and interpretation of the CLAD messages that go between the
body-board and head-board. It describes the fields and how they are encoded, etc.

= All multi-byte values are in little endian order

= The letters to describe the frame type are in the order sent (effectively the opposite of the 16-

bit values)

The following kinds of messages can be sent from the head-board to the body-board:

Table 27: Summary of
the commands from the

Frame type Payload Size Description

636415 32 Appears to allow sending text back to the body board and ~ head-board to the body-

‘dc’ out its backs end. [Data character? charger data?] Note: board
this message is not supported in production application
firmware (i.e. 1.6).

646616 64 Data frame. This has all the bits for the LEDs, motor

fd’ drivers, power controls, etc.

647316 0 Shutdown: disconnect the battery, to shutoff the system.

sq’

667516 1028 Update firmware frame. Sends a 1024B as part of the

‘uf! DFU payload. The first 16b is the offset in the program
memory to update; the next 16b are the number of 32-bit
words in the payload to write. (The packet is a fixed size,
so may be padded out)

6D64 16 0 Go to DFU mode? Goto app mode? Change the mode:

‘dm’ enter the boot-loader? start regular reports?

727616 0 Requests the application version. If there is an

‘vr’ application, it responds with a 7276,¢. If there isn’t
application, the boot-loader responds with a 6B61,5 with a
0 payload (a NAK).

736Cs 16 LED control

e

737416 0 Validate the flash, to check that the newly downloaded

'ts’ program and that it passed signature checks. The boot-
loader sends back a 6B61,¢ to ACK to indicate that the
firmware passed checks, or NACK that it does not. If
successful, the application is started. [Test?]

787816 0 Erases the current program memory (the currently

wox?

installed image). The boot-loader sends back a 6B61,¢ to
acknowledge that the erase when it has completed.

ANKI VECTOR - 2021.02.14

89

The following kinds of messages can be sent from the body-board to the head-board:

Table 28: Summary of

Fame type Payload Size Description

the messages from the
636415 32 Appears to include characters. Note: this message is not ~ body-board to the head-
‘dc’ supported in production application firmware (i.e. 1.6). board
64666 768 Data frame. Battery state — level, temperature, flags
'’

The size of the message suggests that it holds 128 samples
from one to three microphones (4 microphones x
2bytes/sample x 80 samples/microphone == 768 bytes)
for the voice activity detection audio processing.

6662;6 Boot-loader frames

b’

6b6156 4 The value is non-zero if an ack

ak’

727616 40 The first 28 payload bytes are TBD. This is followed by a
vr’ 16-byte version (often printable characters). The first 16

bytes of the DFU file are also the version.

737616 16 Note: this message is not supported in production
vs application firmware (i.e. 1.6).

38.1. ENUMERATIONS

These are the indices that the communication uses to refer to sensors, motors, etc.

38.1.1 CIiff Sensors

The cliff sensors indices are:

Table 29: Cliff sensor

Index Meaning enumeration
0 The front-left cliff sensor.

1 The front-right cliff sensor.

2 The back-left cliff sensor.

3 The back-right cliff sensor.

38.1.2 Motors

The motor indices are:

Table 30: Motor

Index Meaning enumeration
0 The left wheel motor.

1 The right wheel motor

2 The lift motor.

3 The head motor.

ANKI VECTOR - 2021.02.14 920

38.2. STRUCTURES

These are the data structures used within the messages.

38.2.1 Motor Status

The motor status structure is:

Table 31: Parameters

Offset Size Type Parameter Description
for motor status
0 4 int32_t position The new position structure
4 4 int32_t dit Change in encoder count from the previous position.
8 4 uint32_t tm The number of ticks since of last change

38.3. DATA FRAME FROM BODY BOARD

The messages are sent fast enough to support microphone sample rate of 15625 samples/second for
each of the 4 microphones.

The parameters for the message from the body-board are:

Table 32: Parameters

Offset Size Type Parameter Description
for Data Frame from the
0 4 uint32_t body board
4 2 uint16_t status See bit fields below.
6 1 uint8_t 12C device fault 0 if no fault, otherwise the 12C address of the sensor that

can’t communicate:

0x52: The time of flight distance sensor failed during
power on self test

0xA®6: a cliff sensor failed. See the minor code for
which sensor.

7 1 uind_t 12C fault item If the fault is 0xAGB, this is the index of the first cliff
sensor that was detected to have failed. See the
enumeration above.

8 48 motor status[4] motor status The motor status (see structure above) for each of the
motors

56 8 uint16_t[4] cliff sensor Sensor readings for each of the cliff sensors

64 2 int16_t battery voltage The battery voltage, scale by 0.00136719 to get volts

66 2 int16_t charger voltage The charger voltage, scale by 0.00136719 to get volts

68 2 int16_t Body The body-board MCU temperature (proxy for the battery
Temperature C temperature)

72 2 uint16_t battery flags see below

Ox4c 1 uint8_t prox sigma mm The low 4 bits are some sort of state

Ox4e 2 uint16_t prox raw range The time of flight sensor’s reported range
(mm)

0x50 2 uint16_t prox signal rate The time of flight sensor’s reported signal strength
(mcps)

ANKI VECTOR - 2021.02.14 91

0x52
0x54
0x56

0x58

92
96

100
102-128
128

640

uint16_t
uint16_t

uint16_t

uint32_t

uint16_t[2]
uint16_t[2]

uint16_t
UNKNOWN
uint16_t[320]

prox ambient The time of flight sensor’s reported ambient noise
prox SPAD count The time of flight sensor’s reported SPAD count

prox sample The time of flight sensor’s reported sample count
count

prox calibration

result
Index 1 is the button, 0 is the touch sense ADC?
Something to do with the microphones, appears to be
indices to the buffers being used.
Something related to the button inputs

mic samples The microphone samples. The size of the message

suggests that it holds 80 samples from each microphones

(4 microphones x 2bytes/sample x 80

samples/microphone == 640 bytes) for the voice activity

detection audio processing.

That status byte bit indices are:

Bit Index Meaning

0 This bit is set if the cliff sensor and time of flight sensor are on; it is
clear if they are off.

1 This bit is set if the motor encoders have been turned off. This is done
to save power when the motors are idle. If the bit is not set, the
encoders are enabled.

2 The head encoder has changed value (the head moved).

3 The lift encoder has changed value (the lift moved)

Battery condition bit indices are:

Bit Index

Meaning

0

-

g N W N

The charger is connected to a power source — that is, the charger IC
has detected a voltage supplied to the charging pins.

The battery is charging

The battery is disconnected.
The battery is overheated
unknown/reserved

The battery voltage is low, below a critical threshold (probably as
defined by the charger).

Emergency shutdown imminent.

Some of these bits may have had different meaning in the past, and became unused with body-
board firmware revisions.

Table 33: Status
condition indices

Table 34: Battery
condition indices

ANKI VECTOR - 2021.02.14 92

38.4. DATA FRAME FROM HEAD BOARD TO BODY BOARD

The parameters for the message from the body-board are:

Table 35: Parameters

Offset Size Type Parameter Description
for Data Frame from the
0 4 uint32_t Sequence number(?) head-board
4 4 uint32_t Two bit are checked.. Charger control (?)
8 8 iint16_t[4] Motor settings
24 12 uint8_t[12] LED RGB values
36 28 ignored

ANKI VECTOR - 2021.02.14 93

CHAPTER 13

Vector Bluetooth LE
Communication

Protocol

This chapter describes Vector’s Bluetooth LE communication protocol.
= The kinds of activities that can be done thru communication channels
= The interaction sequences
= The communication protocol stack, including encryption, fragmentation and reassembly.

Note: communication with the Cube is simple reading and writing a characteristic, and covered in
Appendix G.

39. COMMUNICATION PROTOCOL OVERVIEW

Vector advertises services on Bluetooth LE, with the Bluetooth LE peripheral name the same as his
robot name (i.e. something that looks like “Vector-E5S6”.)

Communication with Vector, once established, is structure as a request-response protocol. The
request and responses are referred to as “C-Like Abstract Data structures” (CLAD) which are
fields and values in a defined format, and interpretation. Several of these messages are used to
maintain the link, setting up an encryption over the channel.

The application layer messages may be arbitrarily large. To support Bluetooth LE 4.1 (the version
in Vector, and many mobile devices) the CLAD message must be broken up into small chunks to
be sent, and then reassembled on receipt.

ANKI VECTOR - 2021.02.14 94

Combined with application-level encryption, the communication stack looks like:

Figure 55: Overview of

o encryption and
i 2l Data fragmentation stack
©lslg
oo
n o
o
K
g = Data
o |88
S g2
A
S o Encrypt &
% Acé Decrypt
< 5
@ 2 £ Data
<2 g
—

Fragmentation &
Reassembly

£ Data

c

Q

-
S Wrg
o 2

9

% g 5| Data
o

THE BLUETOOTH LE is the link/transport media. It handles the delivery, and low-level error
detection of exchanging message frames. The frames are fragments of the overall message. The
GUID’s for the services and characteristics can be found in Appendix G.

THE FRAGMENTATION & REASSEMBLY is responsible for breaking up a message into multiple
frames and reassembling them into a message.

THE ENCRYPTION & DECRYPTION LAYER is used to encrypt and decrypt the messages, after the
communication channel has been set up.

THE RTS is extra framing information that identifies the kind of CLAD message, and the version of
its format. The format changed with version, so this version code is embedded at this layer.

THE C-LIKE ABSTRACT DATA (CLAD) is the layer that decodes the messages into values for fields,
and interprets them,

ANKI VECTOR - 2021.02.14 95

39.1. SETTING UP THE COMMUNICATION CHANNEL

It sometimes helps to start with the overall process. This section will walk thru the process,
referring to later sections where detailed information resides.

If you connect for the “first time” — or wish to re-pair with him — put him on the charger and press
the backpack button twice quickly. He’ll display a screen indicating he is getting ready to pair.

If you have already paired the application with Vector, the encryption keys can be reused.

The process to set up a Bluetooth LE communication with Vector is complex. The sequence has

many steps:
Application Vector Figure 56: Sequence for
Handhake initiating communication
with Vector
Handshake N

_ Connection Request

Connection Response, |

P Nonce
Nonce Response
P Challenge

Challenge response

, Challenge success

1. The application opens Bluetooth LE connection (retrieving the service and characteristics
handles) and subscribes to the “read” characteristic (see Appendix G for the UUID).

2. Vector sends handshake message; which the application receives. The handshake message
structure is given below. The handshake message includes the version of the protocol

supported.
Offset Size Type Parameter Description Table 36: Parameters
for Handshake message
0 1 uint8_t type ?
1 4 uint32_t version The version of the protocol/messages to employ

3. The application sends the handshake back

4. Then the Vector will send a connection request, consisting of the public key to use for the
session. The application’s response depends on whether this is a first-time pairing, or a
reuse.

a. First time pairing requires that Vector have already been placed into pairing
mode prior to connecting to Vector. The application keys should be created (see
section 39.3.1 First time pairing above).

b. Reconnection can reuse the public and secret keys, and the encryption and
decryption keys from a prior pairing

5. The application should then send the publicKey in the response

ANKI VECTOR - 2021.02.14 96

6. Ifthisis a first-time pairing, Vector will display a pin code. This is used to create the
public and secret keys, and the encryption and decryption keys (see section 39.3.1 First
time pairing above). These can be saved for use in future reconnection.

7. Vector will send a nonce message. After the application has sent its response, the channel
will now be encrypted.

8. Vector will send a challenge message. The application should increment the passed value
and send it back as a challenge message.

9. Vector will send a challenge success message.
10. The application can now send other commands

If the user puts Vector on the charger, and double clicks the backpack button, Vector will usually
send a disconnect request.

FRAGMENTATION AND REASSEMBLY

An individual frame sent over Bluetooth LE is limited to 20 bytes. (This preserves compatibility
with Bluetooth LE 4.1) A frame looks like:

Payload

Control

The control byte is used to tell the receiver how to reassemble the message using this frame.

= If the MSB bit (bit 7) is set, this is the start of a new message. The previous message
should be discarded.

= Ifthe 2nd MSB (bit 6) is set, this is the end of the message; there are no more frames.
= The 6 LSB bits (bits 0..5) are the number of payload bytes in the frame to use.

The receiver would append the payload onto the end of the message buffer. If there are no more
frames to be received it will pass the buffer (and size count) on to the next stage. If encryption has
been set up, the message buffer will be decrypted and then passed to the RTS and CLAD. If
encryption has not been set up, it is passed directly to the RTS & CLAD.

Fragmenting reverses the process:
1. Set the MSB bit of the control byte, since this is the start of a message.
2. Copy up to 19 bytes to the payload.
3. Set the number of bytes in the 6 LSB bits of the control byte
4. If there are no more bytes remaining, set the 2nd MSB it of the control byte.
5. Send the frame to Vector

6. If there are bytes remaining, repeat from step 2.

ANKI VECTOR - 2021.02.14

97

39.3. ENCRYPTION SUPPORT

For the security layer, you will need the following:

uint8_t Vectors_publicKey[32]; Example 1: Bluetooth
uint8_t publicKey [crypto_kx_PUBLICKEYBYTES]; LE encryption structures
uint8_t secretKey [crypto_kx_SECRETKEYBYTES];

uint8_t encryptionKey[crypto_kx_SESSIONKEYBYTES];

uint8_t decryptionKey[crypto_kx_SESSIONKEYBYTES];

uint8_t encryptionNonce[24];

uint8_t decryptionNonce[24];

uint8_t pinCode[16];

The variables mean:

Variable Description -elz—r?(t:)rljp?i;-l\—/r:r}iables
decryptionKey The key used to decrypt each message from to Vector.

decryptionNonce An extra bit that is added to each message. The initial nonce’s to use are provided by Vector.

encryptionKey The key used to encrypt each message sent to Vector.

encryptionNonce An extra bit that is added to each message as it is encrypted. The initial nonce’s to use are

provided by Vector.
pinCode 6 digits that are displayed by Vector during an initial pairing.

Vectors_publickey The public key provided by Vector, used to create the encryption and decryption keys.

There are two different paths to setting up the encryption keys:

= First time pairing, and

= Reconnection

39.3.1 First time pairing
First time pairing requires that Vector be placed into pairing mode prior to the start of
communication. This is done by placing Vector on the charger, and quickly double clicking the
backpack button.

The application should generate its own internal public and secret keys at start.

crypto_kx_keypair(publicKey, secretKey); Example 2: Bluetooth

e LE key pair
The application will send a connection response with first-time-pairing set, and the public key. P

After Vector receives the connection response, he will display the pin code. (See the steps in the
next section for when this will occur.)

The session encryption and decryption keys can then created:

crypto_kx_client_session_keys(decryptionKey, encryptionKey, publicKey, secretKey, Example 3: Bluetooth

Vector_publicKey); LE encryption &
size_t pin_length = strlen(pin); decryption keys

crypto_generichash(encryptionKey, sizeof(encryptionKey), encryptionKey,
sizeof (encryptionKey), pin, pin_length);

crypto_generichash(decryptionKey, sizeof(decryptionKey), decryptionKey,
sizeof (decryptionKey), pin, pin_length);

39.3.2 Reconnecting
Reconnecting can reused the public and secret keys, and the encryption and decryption keys. It is
not known how long these persist on Vector.

ANKI VECTOR - 2021.02.14 98

39.3.3 Encrypting and decryption messages
Vector will send a nonce message with the encryption and decryption nonces to employ in
encrypting and decrypting message.

Each received enciphered message can be decrypted from cipher text (cipher, and cipherLen) to the
message buffer (message and messagelLen) for further processing:
crypto_aead_xchacha20poly1305_ietf_decrypt(message, &messagelLen, NULL, cipher, Example 4: Decrypting

cipherLen, NULL, OL, decryptionNonce, decryptionKey);

. - : . y a Bluetooth LE message
sodium_increment(decryptionNonce, sizeof decryptionNonce);

Note: the decryptionNonce is incremented each time a message is decrypted.

Each message to be sent can be encrypted from message buffer (message and messageLen) into
cipher text (cipher, and cipherLen) that can be fragmented and sent:
crypto_aead_xchacha20poly1305_ietf_encrypt(cipher, &cipherLen, message, Example 5: Encrypting

messagelLen, NULL, OL, NULL, encryptionNonce, encryptionKey);

. : - - - a Bluetooth LE message
sodium_increment(encryptionNonce, sizeof encryptionNonce);

Note: the encryptionNonce is incremented each time a message is encrypted.

39.4. THE RTS LAYER

There is an extra, pragmatic layer before the messages can be interpreted by the application. The
message has two to three bytes at the header:

Figure 57: The format of

an RTS frame
Params

Type
Version

=)
©
=

= The type byte is either 1 or 4. If it is 1 the version number is 1.

= Iftype byte is 4, the version is held in the next byte. (If the type is 1, there is no version
byte).

= The next byte is the tag — the value used to interpret the message.

The tag, parameter body, and version are passed to the CLAD layer for interpretation. This is
described in the next section.

ANKI VECTOR - 2021.02.14 929

39.5. FETCHING A LOG

The process to set up a Bluetooth LE communication with Vector is moderately complex. The
sequence has many steps:

Figure 58: Sequence for

Application Vector
M) M) initiating communication
Log request - .
with Vector
, Logresponse
, _ File download
_ File download
|, File download

The log request is sent to Vector. In principal this includes a list of the kinds of logs (called filter
names) to be included. In practice, the “filter name” makes no difference.

Vector response, and if there will be a file sent, includes an affirmative and a 32-bit file identifier
used for the file transfer.

Vector zips the log files up (as a tar.bz2 compressed archive) and sends the chunks to the
application. Each chunk has this file identifier. (Conceptually there could be several files in
transfer at a time.)

The file transfer is complete when the packet number matches the packet total.

ANKI VECTOR -+ 2021.02.14 100

39.6. A BLE SHELL CONNECTION

The process to set up a Bluetooth LE communication with Vector’s shell is moderately complex.

The sequence has many steps:

Application

BLE Shell connect request

Vector

_, BLE Shell connect response

BLE Shell to Server request

| BLE Shell to Server response

 BLE Shell to Client request

BLE Shell to Client response

BLE Shell disconnect request

—

The BLE Shell Connect request is sent to Vector. Vector response will include a status code

—

indicating success or not. If successful a bi-directional stream can be sent.

The client has the option to close the shell connection at any time by sending a BLE Shell

Disconnect request.

Figure 59: Sequence for
communication with a
command shell on
Vector

Note: The BLE Shell connection requires Version 6 of the BLE protocol to be honored by Vector.
No version of the Vector software has been identified that supports this version.

ANKI VECTOR

©2021.02.14 101

40.

MESSAGE FORMATS

This section describes the format and interpretation of the CLAD messages that go between the
App and Vector. It describes the fields and how they are encoded, etc. Fields that do not have a
fixed location, have no value for their offset. Some fields are only present in later versions of the

protocol. They are marked with the version that they are present in.

Except where otherwise stated:

All are values in little endian order

Requests are from the mobile application to Vector, and responses are Vector to the
application

Request Response Min Version

Application connection 1F46 2016 4
id

BLE shell connect 2616 2746 6
BLE shell disconnect 2C4s 2Dy 6
BLE shell to client 2A46 2B 6
BLE shell to server 28 29 6
Cancel pairing 1046 0
Challenge 0446 0446 0
Challenge success 0516 0
Connect 0116 0246 0
Cloud session 1D16 1E1s 3
Disconnect 1116 0
File download 1are 2
Log 1846 1946 2
Nonce 0346 1246

OTA cancel 1716 2
OTA update OE16 OF 16 0
SDK proxy 224 234 5
Response 2146 4
SSH 1516 1616 0
Status OA+¢ (0]: 778 0
Versions list 24y 2546 6
WiFi access point 1316 1446 0
WiFi connect 0616 0746 0
WiFi forget 1By 1Cq6 3
WiFi IP 0816 094 0
WiFi scan 0C1s 0D1s 0

ANKI VECTOR

Table 38: Summary of

the commands

- 2021.02.14 102

40.1. APPLICATION CONNECTION ID

Assigns a DAS/Analytics id to use with the appication for this Bluetooth LE session.

40.1.1 Request
The parameters of the request body are:
Offset Size Type Parameter Description Table 3_9: Earameters
for Application
0 2 uint16_t id length The length of the id; may be 0 Connection Id request
2 varies uint8_t[id id The DAS/Analytics id to associate with the Application
length] for this Bluetooth LE session.
40.1.2 Response

There is no response.

ANKI VECTOR -+ 2021.02.14 103

40.2. BLE SHELL CONNECT

Table 40: Parameters
for BLE Shell Connect

40.2.1 Request
The request body has no parameters.
40.2.2 Response
The parameters of the response body are:
Offset Size Type Parameter Description
0 1 uint8_t status The error code (or indication of success) for the
command.

response

40.3. BLE SHELL DISCONNECT

Table 41: Parameters
for BLE Shell

40.3.1 Request
The request body has no parameters.
40.3.2 Response
The parameters of the response body are:
Offset Size Type Parameter Description
0 1 uint8_t status The error code (or indication of success) for the
command.

Disconnect response

40.4. BLE SHELL TO CLIENT

404.1 Request

The parameters of the request body are:

Table 42: Parameters
for BLE Shell to Client

request

Table 43: Parameters
for BLE Shell to Client

Offset Size Type Parameter Description

0 2 uint16_t text length The length of the text; may be 0

2 varies uint8_t[text text The text to send to the client from the shell.
length]

40.4.2 Response
The parameters of the response body are:

Offset Size Type Parameter Description

0 1 uint8_t status The error code (or indication of success) for the

command.

response

ANKI VECTOR

- 2021.02.14 104

40.5. BLE SHELL TO SERVER

Table 44: Parameters
for BLE Shell to Server

request

Table 45: Parameters
for BLE Shell to Server

40.5.1 Request
The parameters of the request body are:

Offset Size Type Parameter Description

0 2 uint16_t text length The length of the text; may be 0

2 varies uint8_t[text text The text to send to the shell (server) from the client.
length]

40.5.2 Response
The parameters of the response body are:

Offset Size Type Parameter Description

0 1 uint8_t status The error code (or indication of success) for the

command.

response

ANKI VECTOR

-+ 2021.02.14 105

40.6. CANCEL PAIRING

Speculation: this is sent by the application to cancel the pairing process

40.6.1 Request

The command has no parameters.

40.6.2 Response

There is no response.

ANKI VECTOR -+ 2021.02.14 106

40.7. CHALLENGE

This challenge is sent by Vector to the application if he liked the response to a nonce message.

40.7.1 Request
The parameters of the request body are:
Offset Size Type Parameter Description Table 46: Parameters
for challenge request
0 4 uint8_t value The challenge value
The application, when it receives this message, should increment the value and send the response
(a challenge message).
40.7.2 Response
The parameters of the response body are:
Offset Size Type Parameter Description Table 47: Parameters
for challenge response
0 4 uint8_t value The challenge value; this is 1 + the value that was
received.

If Vector accepts the response, he will send a challenge success.

ANKI VECTOR - 2021.02.14 107

40.8. CHALLENGE SUCCESS

The challenge success is sent by Vector if the challenge response was accepted.

40.8.1 Request

The command has no parameters.

40.8.2 Response

There is no response.

ANKI VECTOR -+ 2021.02.14 108

40.9. CLOUD SESSION

This command is used to request a cloud session.

40.9.1 Command
The parameters of the request body are:
Offset Size Type Parameter Description
0 2 uint16_t session token The number of bytes in the session token; may be 0
length
2 varies uint8_t session token The session token, as received from the cloud server.?
1 uint8_t client name The number of bytes in the client name string; may be 0
length version >=5
varies uint8_t[] client name The client name string. Informational only. The mobile
app uses the name of the mobile device.
version >=5
1 uint8_t application id The number of bytes in the application id string; may be
length 0; version>=5
varies uint8_t[] application id The application id. Informational only. The mobile
uses “‘companion-app”. version >=5
40.9.2 Response result
The parameters for the connection response message are:
Offset Size Type Parameter Description
0 1 uint8_t success 0 if failed, otherwise successful
1 1 uint8_t status See Table 50: Cloud status enumeration
2 1 uint16_t client token The number of bytes in the client token GUID; may be 0
GUID length
varies uint8_t[] client token The client token GUID. The client token GUID should

GUID

be saved for future use.

The cloud status types are:

Index

Meaning

N

o U A W N

unknown error

connection error

wrong account

invalid session token

authorized as primary

authorized as secondary

reauthorization

2 https://groups.google.com/forum/#!msg/anki-vector-rooting/Y1Y QsX080D4/fvk AOZ91CgAJ
https://groups.google.com/forum/#!msg/anki-vector-rooting/ X AaBE6e94ek/OdES50PaBQAJ

Table 48: Parameters
for Cloud Session
request

Table 49: Parameters
for Cloud Session
Response

Table 50: Cloud
status enumeration

ANKI VECTOR -+ 2021.02.14 109

40.10. CONNECT

The connect request comes from Vector at the start of a connection. The response is from the
application.

40.10.1 Request

The parameters of the request body are:

Table 51: Parameters

Offset Size Type Parameter Description)
for Connection request

0 32 uint8_t[32] publicKey The public key for the connection

The application, when it receives this message, should use the public key for the session, and
send a response back.

40.10.2 Response
The parameters for the connection response message are:

Table 52: Parameters

Offset Size Type Parameter Description .
for Connection

0 1 uint8_t connectionType See Table 53: Connection types enumeration Response

1 32 uint8_t[32] publicKey The public key to use for the connection

The connection types are:

Table 53: Connection

Index Meaning)
types enumeration

0 first time pairing (requests pin code to be displayed)

1 reconnection

The application sends the response, with its publicKey (see section 39.3 Encryption support). A
“first time pairing” connection type will cause Vector to display a pin code on the screen

If a first time pairing response is sent:

= If Vector is not in pairing mode — was not put on his charger and the backpack button
pressed twice, quickly — Vector will respond. Attempting to enter pairing mode now will
cause Vector to send a disconnect request.

= If Vector is in pairing mode, Vector will display a pin code on the screen, and send a nonce
message, triggering the next steps of the conversation.

If a reconnection is sent, the application would employ the public and secret keys, and the
encryption and decryption keys from a prior pairing.

ANKI VECTOR -+ 2021.02.14 110

40.11. DISCONNECT

This may be sent by Vector if there is an error, and it is ending communication. For instance, if
Vector enters pairing mode, it will send a disconnect.

The application may send this to request Vector to close the connection.

40.11.1 Request
The command has no parameters.

40.11.2 Response

There is no response.

ANKI VECTOR -+ 2021.02.14 111

40.12. FILE DOWNLOAD

This command is used to pass chunks of a file from Vector to the application. Files are broken up
into chunks and sent.

for File Download

40.12.1 Request
There is no direct request.
40.12.2 Response
The parameters of the response body are:
Offset Size Type Parameter Description
0 1 uint8_t status
1 4 uint32_t file id
5 4 uint32_t packet number The chunk within the download
9 4 uint32_t packet total The total number of packets to be sent for this file
download
13 2 uint16_t length The number of bytes to follow (can be 0)
varies uint8_t[length] bytes The bytes of this file chunk

response

ANKI VECTOR

-+ 2021.02.14 112

Table 54: Parameters

40.13. LOG

This command is used to request the VVector send a compressed archive of the logs.

40.13.1 Request

The parameters of the request body are:

Table 55: Parameters

Offset Size Type Parameter Description
for Log request
0 1 uint8_t mode
1 2 uint16_t num filters The number of filters in the array
3 varies filter[num filters The filter names
filters]

Each filter entry has the following structure:

Table 56: Log filter

Offset Size Type Parameter Description
0 2 uint16_t filter length The length of the filter name; may be 0
2 varies uint8_t[filter filter name The filter name
length]
40.13.2 Response

It can take several seconds for Vector to prepare the log archive file and send a response. The
response will be a “log response” (below) and a series of “file download” responses.

The parameters for the response message are:

Table 57: Parameters

Offset Size Type Parameter Description
for Log Response
0 1 uint8_t exit code
1 4 uint32_t file id A 32-bit identifier that will be used in the file download
messages.

ANKI VECTOR -+ 2021.02.14 113

40.14. NONCE

A nonce is sent by Vector after he has accepted the application’s key. The application is to send a
response.

40.14.1 Request
The parameters for the nonce request message are:
Offset Size Type Parameter Description Table 58: Parameters
for Nonce request
0 24 uint8_t[24] toVectorNonce The nonce to use for sending stuff to Vector
24 24 uint8_t[24] toAppNonce The nonce for receiving stuff from Vector
40.14.2 Response
After receiving a nonce, if the application is in first-time pairing the application should send a
response, with a value of 3.
Offset Size Type Parameter Description Table 59: Parameters
for Nonce response
0 1 uint8_t connection tag This is always 3

After the response has been sent, the channel will now be encrypted. If vector likes the response,
he will send a challenge message.

ANKI VECTOR -+ 2021.02.14 114

40.15. OTA UPDATE

This command is used to request the Vector download software from a given server URL.

40.15.1 Request

The parameters of the request body are:

Table 60: Parameters

Offset Size Type Parameter Description
for OTA request
0 1 uint8_t length The length of the URL; may be 0
1 varies uint8_t[length] URL The URL string
40.15.2 Response

The response will be one or more “OTA response” indicating the status of the update, or errors.
Status codes >= 200 indicate that the update process has completed. The update has completed the
download when the current number of bytes match the expected number of bytes.

The parameters for the response message are:

Table 61: Parameters

Offset Size Type Parameter Description
for OTA Response
0 1 uint8_t status See Table 62: OTA status enumeration
1 8 uint64_t current The number of bytes downloaded
9 8 uinté4_t expected The number of bytes expected to be downloaded

The OTA status codes are:

Table 62: OTA status

Status Meaning i
enumeration

0 idle

1 unknown

2 in progress

3 complete

4 rebooting

5 error

200... Status codes from the update-engine. See Appendix D, Table 606: OTA

update-engine status codes.

Note: the status codes 200 and above are from the update-engine, and are given in Appendix D.

ANKI VECTOR -+ 2021.02.14 115

40.16. RESPONSE

This message will be sent on the event of an error. Primarily if the session is not cloud authorized
and the command requires it.

Table 63: Parameters

Offset Size Type Parameter Description
for Response
0 1 uint16_t code 0 if not cloud authorized, otherwise authorized
1 1 uint8_t length The number of bytes in the string that follows.
varies uint8_t [length] text A text error message.

ANKI VECTOR -+ 2021.02.14 116

40.17. SDK PROXY

This command is used to pass the gRPC/protobufs messages to Vector over Bluetooth LE. It
effectively wraps a HTTP request/response. Note: the HTTPS TLS certificate is not employed
with this command.

Table 64: Parameters
for the SDK proxy

request

Table 65: Parameters
for the SDK proxy

Response

40.17.1 Request
The parameters of the request body are:
Offset Size Type Parameter Description
0 1 uint8_t GUID length The number of bytes in the GUID string; may be 0
2 varies uint8_t[GUID GUID The GUID string
length]
1 uint8_t msg length The number of bytes in the message id string
varies uint8_t[msgid msg id The message id string
length]
1 uint8_t path length The number of bytes in the URL path string
varies uint8_t[path path The URL path string
length]
2 uint16_t JSON length The length of the JSON
varies uint8_t[JSON JSON The JSON (string)
length]
40.17.2 Response
The parameters for the response message are:
Offset Size Type Parameter Description
0 1 uint8_t msg id length The number of bytes in the message id string; may be 0
2 varies uint8_t[msgid msg id The message id string
length]
2 uint16_t status code The HTTP-style status code that the SDK may return.
1 uint8_t type length The number of bytes in the response type string
varies uint8_t[type type The response type string
length]
2 uint16_t body length The length of the response body
varies uint8_t[body body The response body (string)

length]

ANKI VECTOR - 2021.02.14 117

40.18. SSH

This command is used to request the Vector allow SSH. SSH is supported only in developer

releases (and not all). SSH is not supported in the production release software.

40.18.1 Request
The SSH key command passes the authorization key by dividing it up into substrings and passing
the list of substrings. The substrings are appended together by the recipient to make for the overall
authorization key.
The parameters for the request message are:
Offset Size Type Parameter Description Table 66: Parameters
for SSH request
0 2 uint16_t num substrings The number of SSH authorization keys; may be 0
2 varies substring[num substrings The array of authorization key strings (see below).
substrings]
Each authorization key substring has the following structure:
Offset Size Type Parameter Description Table _67: ,SSH
authorization key
0 1 uint8_t substring length The Iength of the SUbString; may be 0 substring
1 varies uint8_t[substri substring UTF8 substring of the SSH authorization key
nglength]
40.18.2 Response

The response has no parameters.

ANKI VECTOR

©2021.02.14 118

40.19. STATUS

This command is used to request basic info from Vector.

40.19.1 Request

The request has no parameters.

40.19.2 Response

The parameters for the response message are:

Table 68: Parameters

Offset Size Type Parameter Description
for Status Response
0 1 uint8_t SSID length The number of bytes in the SSID string; may be 0
2 varies uint8_t[SSID SSID The WiFi SSID (hex string).
length]
1 uint8_t WiFi state See Table 69: WiFi state enumeration
1 uint8_t access point 0 not acting as an access point, otherwise acting as an
access point
1 uint8_t Bluetooth LE 0 if the Bluetooth
state
1 uint8_t Battery state
1 uint8_t version length The number of bytes in the version string; may be 0
version >= 2
varies uint8_t [version version The version string; version >= 2
length]
1 uint8_t ESN length The number of bytes in the ESN string; may be 0
version >= 4
varies uint8_t[ESN ESN The electronic serial number string; version >= 4
length]
1 uint8_t OTA in progress 0 over the air update not in progress, otherwise in
process of over the air update; version >= 2
1 uint8_t has owner 0 does not have an owner, otherwise has an owner;
version >= 3
1 uint8_t cloud authorized 0 is not cloud authorized, otherwise is cloud authorized;
version >=5

Note: a hex string is a series of bytes with values 0-15. Every pair of bytes must be converted to a
single byte to get the characters. Even bytes are the high nibble, odd bytes are the low nibble.

The WiFi states are:

Table 69: WiFi state

Index Meaning enumeration
0 Unknown

1 Online

2 Connected

3 Disconnected

ANKI VECTOR -+ 2021.02.14 119

40.20. VERSIONS LIST

Table 70: Parameters
for Version List

40.20.1 Request
The request body has no parameters.
40.20.2 Response
The parameters of the response body are:
Offset Size Type Parameter Description
0 2 uint16_t length The length of the array; may be 0
2 varies uint16_t[length versions An array of version numbers.

]

response

ANKI VECTOR

- 2021.02.14 120

40.21. WIFI ACCESS POINT

This command is used to request that the Vector act as a WiFi access point. This command

requires that a “cloud session” have been successfully started first (see section 40.9 Cloud session).

If successful, Vector will provide a WiFi Access Point with an SSID that matches his robot name.

40.21.1 Request
The parameters of the request body are:
Offset Size Type Parameter Description
0 1 uint8_t enable 0 to disable the WiFi access point, 1 to enable it
40.21.2 Response
If the Bluetooth LE session is not cloud authorized a “response” message will be sent with this
error. Otherwise the WiFi Access Point response message will be sent.
The parameters for the response message are:
Offset Size Type Parameter Description
0 1 uint8_t enabled 0 if the WiFi access point is disabled, otherwise enabled
1 1 uint8_t SSID length The number of bytes in the SSID string; may be 0
2 varies uint8_t[SSID SSID The WiFi SSID (hex string)
length]
1 uint8_t password length ~ The number of bytes in the password string; may be 0
varies uint8_t password The WiFi password
[password
length]

Table 71: Parameters
for WiFi Access Point
request

Table 72: Parameters
for WiFi Access Point
Response

ANKI VECTOR - 2021.02.14 121

40.22. WIFI CONNECT

This command is used to request Vector to connect to a given WiFi SSID. Vector will retain this

WiFi for future use.

40.22.1 Request
The parameters for the request message are:
Offset Size Type Parameter Description
0 1 uint8_t SSID length The number of bytes in the SSID string; may be 0
1 varies uint8_t[SSID SSID The WiFi SSID (hex string)
length]
1 uint8_t password length ~ The number of bytes in the password string; may be 0
varies uint8_t password The WiFi password
[password
length]
1 uint8_t timeout How long to given the connect attempt to succeed.
1 uint8_t auth type The type of authentication to employ; see Table 74:
WiFi authentication types enumeration
1 uint8_t hidden 0 the access point is not hidden; 1 it is hidden
The WiFi authentication types are:
Index Meaning
0 None, open
1 WEP
2 WEP shared
3 IEEE8021X
4 WPA PSK
5 WPA2 PSK
6 WPA2 EAP
40.22.2 Response
The parameters for the response message are:
Offset Size Type Parameter Description
0 1 uint8_t SSID length The length of the SSID that was deleted; may be 0
1 varies uint8_t[SSID SSID The SSID (hex string) that was deleted
length]
1 uint8_t WiFi state See Table 69: WiFi state enumeration
1 uint8_t connect result version >= 3

A pretty Wi-Fi for the
little guy

Table 73: Parameters
for WiFi Connect
request

Table 74: WiFi
authentication types
enumeration

Table 75: Parameters
for WiFi Connect
command

ANKI VECTOR - 2021.02.14 122

40.23. WIFI FORGET

This command is used to request Vector to forget a WiFi SSID.

Table 76: Parameters
for WiFi Forget request

Table 77: Parameters
for WiFi Forget response

40.23.1 Request
The parameters for the request message are:
Offset Size Type Parameter Description
0 1 uint8_t delete all 0 if Vector should delete only one SSID; otherwise
Vector should delete all SSIDs
1 1 uint8_t SSID length The length of the SSID that to be deleted; may be 0
2 varies uint8_t[SSID SSID The SSID (hex string) to be deleted
length]
40.23.2 Response
The parameters for the response message are:
Offset Size Type Parameter Description
0 1 uint8_t did delete all 0 if only one; otherwise Vector deleted all SSIDs
1 1 uint8_t SSID length The length of the SSID that was deleted; may be 0
2 varies uint8_t[SSID SSID The SSID (hex string) that was deleted
length]

ANKI VECTOR

- 2021.02.14 123

40.24. WIFI IP ADDRESS

This command is used to request Vector’s WiFi IP address.

Table 78: Parameters
for WiFi IP Address

40.24.1 Request
The request has no parameters
40.24.2 Response
The parameters for the response message are:
Offset Size Type Parameter Description
0 1 uint8_t has IPv4 0 if Vector doesn’t have an IPv4 address; other it does
1 1 uint8_t has IPv6 0 if Vector doesn’t have an IPv6 address; other it does
2 4 uint8_t[4] IPv4 address Vector’s IPv4 address
6 32 uint8_t[16] IPv6 address Vector’s IPv6 address

response

ANKI VECTOR

- 2021.02.14 124

40.25. WIFI SCAN

This command is used to request Vector to scan for WiFi access points.

finding hot signals in
Vectors area

Table 79: Parameters
for WiFi scan response

Table 80: Parameters
access point structure

40.25.1 Request
The command has no parameters.
40.25.2 Response
The response lists the Wi-Fi access points Vector can find. The parameters for the response
message are:
Offset Size Type Parameter Description
0 1 uint8_t status code
1 1 uint8_t num entries The number of access points in the array below
2 varies AP[num access points The array of access points
entries]
Each access point has the following structure:
Offset Size Type Parameter Description
0 1 uint8_t auth type The type of authentication to employ; see Table 74:
WiFi authentication types enumeration
1 1 uint8_t signal strength The number of bars, 0..4
2 1 uint8_t SSID length The length of the SSID string
3 varies uint8_t[SSID SSID The SSID (hex string)
length]
1 uint8_t hidden 0 not hidden, 1 hidden; version >= 2
1 uint8_t provisioned 0 not provisioned, 1 provisioned; version>= 3

ANKI VECTOR

-+ 2021.02.14 125

CHAPTER 14

Cube Bluetooth LE

Communication

Protocol

This chapter describes communication protocol to talk with the Cube.
= The kinds of activities that can be performed
= The interaction sequences

= The characteristics.

41. CUBE COMMUNICATION PROTOCOL OVERVIEW

Vector can be “paired” with a cube — or he’ll automatically pair with the first cube he finds during
setup — and will treat this as his preferred cube. If he is unable can’t connect with his preferred
cube, he falls back to connecting the first cube found in the area while playing.

Vector manages the link with the cube, and data is sent and received using Bluetooth LE
characteristics. Vector may send values, fetch values from the Cube, or ask to be sent values when
they change.

When Bluetooth LE is in an unconnected state, it sends out advertisements at a regular interval, but
not too speedy. When Vector connects with the cube, it doesn’t open a stream of continuous bits.
Instead, it negotiates a new interval that is appropriate for speed of interaction, distance, and
battery life.

41.1. SENDING THE FIRMWARE APPLICATION

The Cube has a boot-loader built in, but the application firmware is held in SRAM. It has to be Paul m Brett
downloaded to the cube by Vector. The Vector application is determines if the application is

already present by reading the application firmware version. The application download is done

with a sequence like:

Figure 60: Sequence for
sending the Cube
firmware

Vector Cube
Version request

. >
 Version response

OTA download

OTA download

\ 4

ANKI VECTOR -+ 2021.02.14 126

7. Checking the version. Compares this with the version of the latest file. If the version
identifier is matches, it skips the reset of the steps

8. Vector then sends the bytes of the application (from the cube firmware file) down in 20
byte chunks.

41.1.1 The format of the firmware update file

The first 16 bytes of the firmware update files holds the version. This is used only for comparing
versions. It is not sent. The remainder of the file holds the application firmware:

Version Figure 61: The Cube
16 bytes firmware file

Application firmware
Encrypted

41.2. RETRIEVING AND STREAMING ACCELEROMETER DATA

Based on the level interaction, VVector may increase the rate that the Cube sends updates from its
accelerometer:

Unconnected Background Interactable Figure 62: A
representation of the

I 0 D00 00000000 e

The three different rates of communication are used between the Cube and Vector:

1. The lowest level is unconnected —the Cube is just sending out advertisements (that is, “a
hello-world | exist”) a modest interval; there isn’t an active Bluetooth LE connection.

2. The next level is background. The application is getting just enough information from the
cube to know its orientation, broad movements (and maybe that it was tapped).

3. The highest update rate is the interactable level. The cube is configured to send much
more responsive information on the cube orientation, sent fast (or sensitive) enough to
detect taps, and tell if the cube is being held. This rate consumes the most power.

The behavior system drives the level interest in the cube. The condition or active behavior
requests a level of service. The request can be temporary, using a timeout, so that if nothing
interesting is detected in a reasonable period, it falls back to the lower rate.

ANKI VECTOR - 2021.02.14 127

42, CHARACTERISTIC MESSAGE FORMATS

This section describes the format and interpretation of the characteristics that go between the

Vector and the Cube. It describes the fields and how they are encoded, etc.
= All multi-byte values are in little endian order

See Appendix G for the GUIDs for the characteristics

42.1. STRUCTURES

These are the data structures used within the messages.

42.1.1 Accelerometer data

The structure for the accelerometer data is:

Paul m Brett

Table 81: Parameters

Offset Size Type Parameter Description

0 2 int16_t X The measurement (in milli-gs) along the X-axis.
2 2 int16_t Y The measurement (in milli-gs) along the Y-axis.
4 2 int16_t 4 The measurement (in milli-gs) along the Z-axis.

for accelerometer
structure

42.1.2 LED data

The structure for the LED data is:

Table 82: Parameters
for LED control structure

Offset Size Type Parameter Description

0 1 uint8_t index Sequential index, starting at 0. This is the step in the
light sequence pattern to play.

1 1 uint8_t red The red-channel color value

2 1 uint8_t green The green-channel color value

3 1 uint8_t blue The blue-channel color value

4 1 uint8_t alpha The alpha-channel color value. Usually 0

5 1 uint8_t duration The amount of time, in milliseconds(?), to show the

color before proceeding to the next step.

This structure is related to the ones given Chapter 23 section 103 Cube lights Animation for cube

light animation. Probably separate for each of the LEDs.

42.2. LED CONTROL

The parameters of the LED control characteristic are:

Table 83: Parameters
for accelerometer

Offset Size Type Parameter Description
0 1 uint8_t trigger 1 set light information
1 18 LED datal[3] LED data The LED settings for each step

characteristic

ANKI VECTOR

-+ 2021.02.14 128

The parameters of the LED control characteristic are:

Table 84: Parameters

Offset Size Type Parameter Description

for accelerometer
0 1 uint8_t trigger 0 Trigger s or starts it characteristic
1 1 uint8_t[4] sequence Id The sequence index to start with for that LED.

42.3. APPLICATION VERSION

This is used to retrieve the version string for the application. It is used to determine if the
application is present in the Cube, or needs to be sent to the Cube. The parameters of the
application version are:

Table 85: Parameters

Offset Size Type Parameter Description : 7
for version characteristic

0 varies char[] version Empty if there is no application. Otherwise, the version
of the application. The version is also the date and time
of the firmware build.

42.4. BATTERY AND ACCELEROMETER CHARACTERISTIC

The parameters of the battery and accelerometer characteristic are:

Table 86: Parameters

Offset Size Type Parameter Description

for accelerometer
0 2 uint16_t battery battery ADC value characteristic
2 18 Accel_t[3] accelerometer Accelerometer samples

42.5. OTA DOWNLOAD

This characteristic is used to send the firmware. These are sent as a series of 20 byte chunks. The
application firmware is encrypted and will be decrypted by the boot-loader.

42.6. REFERENCES & RESOURCES

Brett, Paul, Communicating with vectors cube
https://forums.anki.com/t/communicating-with-vectors-cube/43042
Paul digs into emulating the Vector’s cube and identifies elements of the protocol. This
chapter was adapted from this information.

ANKI VECTOR - 2021.02.14 129

CHAPTER 15

The HTTPS based
API

This chapter describes the communication with Vector via the local HTTPS.

Note: the information in this chapter comes from the protobuf specification files in the python
SDK, from the SDK itself, and some analysis of the mobile application. All quotes (unless
otherwise indicated) are from the SDK.

43. OVERVIEW OF THE SDK HTTPS API

The descriptions below™ give the JSON keys, and their value format. It is implemented as
gRPC/protobufs interaction over HTTP. (Anki has frequently said that the SDK included code (as
python) with the protobuf spec so that others could use their own preferred implementation
language.) Each command is requested by POST-ing the request structure to the given relative
URL (relative to Vector’s address or local network name) and interpreting the returned body as the
response structure.

The HTTPS header should include
= Bearer BASE64KEY
= Content-Type: application/json

(The JSON request is posted in the body)

43.1. SDK MESSAGE GROUPINGS

The major groups of messages here are:

= Accessories and custom objects

= Actions and behaviors — setting the current priority and cancelling actions
= Alexa configuration — configuring Vector to use Alexa’s services

= Audio — playing sounds on Vector, and submitting text to speech

= Battery — the current state of charge

= Connection — authenticating with the remote servers to allow access to Vector, connection
management, event stream, and end-point version info

= Cube — commands to manage and interact with the cube
= Diagnostics — checking the connection with the cloud, and uploading log information

= Display — display images on Vector’s LCD

% The protocol was specified in Google Protobuf.

ANKI VECTOR -+ 2021.02.14 130

Faces (of people, not Vector’s face) — changing the name of a face, deleting a face
Features and entitlements — the features that are enabled (or disabled)

Image processing — Getting a video stream, and enabling (or disabling) video processing
steps, retrieving & changing the camera exposure settings.

Interactions with objects (outside of the cube)

JDocs, the JSON document storage interface
Map and Navigation

Motion Control

Motion Sensing — how Vector senses that he is moving

Onboarding

Photos — commands to access (and delete) photographs and their thumbnails
Settings and Preferences

Software Updates, used to update Vector’s software — operating system, applications,
assets, etc.

ANKI VECTOR + 2021.02.14 131

44. COMMON ELEMENTS

The enumerations and structures in this section are common to many commands.

44.1. ENUMERATIONS
44.1.1 ResultCode
The ResultCode enumeration has the following named values:
Name Value Description
ERROR_UPDATE_IN_PROGRESS 1 The settings could not be applied; there is already
another update to the settings in process.
SETTINGS_ACCEPTED 0 The settings were successfully saved.

44.1.2 RobotStatus
The RobotStatus is a bit mask used to indicate what Vector is doing, and the status of his controls.
It is used in the RobotState message. The enumeration has the following named bits (any number
may be set). Note that some bits have two names; the second name is one employed by Anki’s
python SDK.

Name Value Description

ROBOT_STATUS_NONE 000004

ROBOT_STATUS_IS_MOVING 0000146 This bit is set “if Vector is currently moving any of

ROBOT_STATUS_ARE_MOTORS_MOVING his motors (head, arm or wheels/treads).”

ROBOT_STATUS_IS_CARRYING_BLOCK 0000246 This bit is set “if Vector is currently carrying a
block.”

ROBOT_STATUS_IS_PICKING_OR_PLACING 000044, This bit is set “if Vector has seen a marker and is

ROBOT_STATUS_IS_DOCKING_TO_MARKER actively heading toward it (for example his charger
or cube).”

ROBOT_STATUS_IS_PICKED_UP 000086 This bit is set “if Vector is currently picked up (in
the air),” being held or is on his side. Vector “uses
the IMU data to determine if the robot is not on a
stable surface with his treads down.” If Vector is
not on stable surface (with his treads down), this bit
is set.

ROBOT_STATUS_IS BUTTON_PRESSED 000104 This bit is set “if Vector's button is pressed.”

ROBOT_STATUS_IS_FALLING 0002016 This bit is set “if Vector is currently falling.”

ROBOT_STATUS_IS_ANIMATING 000406 This bit is set “if Vector is currently playing an
animation.”

ROBOT_STATUS_IS_PATHING 0008016 This bit is set “if Vector is currently traversing a
path.”

ROBOT._STATUS_LIFT._IN_POS 001004 This bit is set “if Vector's arm is in the desired
position.” It is clear “if still trying to move it
there.”

ROBOT_STATUS_HEAD_IN_POS 002004 This bit is set “if Vector's head is in the desired
position.” It is clear “if still trying to move there.”

ROBOT_STATUS_CALM_POWER_MODE 004004 This bit is set “if Vector is in calm power mode.

ANKI VECTOR

Table 87: ResultCode
Enumeration

Table 88: RobotStatus
Enumeration

- 2021.02.14 132

ROBOT_STATUS_IS_BATTERY_DISCONNECT
ED

ROBOT_STATUS_IS_ON_CHARGER

ROBOT_STATUS_IS_CHARGING
ROBOT_STATUS_CLIFF_DETECTED

ROBOT_STATUS_ARE_WHEELS MOVING

ROBOT_STATUS_IS_BEING_HELD

ROBOT_STATUS_IS_MOTION_DETECTED
ROBOT_STATUS_IS_ROBOT_MOVING

ROBOT_STATUS_IS_BATTERY_OVERHEATED

reserved

ROBOT_STATUS_ENCODERS_DISABLED

ROBOT_STATUS_ENCODER_HEAD_INVALID

ROBOT_STATUS_ENCODER_LIFT_INVALID

ROBOT_STATUS_IS_BATTERY_LOW

ROBOT_STATUS_IS_SHUTDOWN_IMMINENT

00800+

01000+

0200046
040004,

08000+

1000044

2000046

4000046

8000046

10000046

20000046

40000046

100000014

200000046

Calm power mode is generally when Vector is
sleeping or charging.”

Not officially defined. This bit is set if the battery
is disconnected.

This bit is set “if Vector is currently on the
charger.” (As determined by the charging
electronics.) Note: Vector may be on the charger
without charging.

This bit is set “if Vector is currently charging.”

This bit is set “if Vector detected a cliff using any
of his four cliff sensors.”

This bit is set “if Vector's wheels/treads are
currently moving.”

This bit is set “if Vector is being held.”

Note: ROBOT_STATUS_IS_PICKED_UP will also be
set when this bit is set.

Vector “uses the IMU to look for tiny motions that
suggest the robot is actively being held in
someone's hand.” This is used to distinguish from
other cases, such as falling, on its side, etc.

This bit is set “if Vector is in motion. This includes
any of his motors (head, arm, wheels/tracks) and if
he is being lifted, carried, or falling.”

Not official defined. This bit is set if Vector’s
battery temperature is considered too hot.

reserved

Not officially defined. This bit is set if Vector has
turned off the motor encoders. This is done to save
power when the motors are idle.

Not officially defined. This bit is set if Vector the
encoder for the head is not valid.

Not officially defined. This bit is set if Vector the
encoder for the head is not valid.

Not officially defined. This bit is set if Vector
battery voltage is critically low; if not on a charger,
Vector will power down.

Not officially defined. This bit is set if the body
board will turn off power very soon. This may be
due to excessive temperature or battery under
voltage.

Note: the RobotStatus is maintained by vic-robot

ANKI VECTOR - 2021.02.14

133

44.2. STRUCTURES

44.2.1 CladPoint
The CladPoint is used to represent a 2D rectilinear point on an image or in the 2D map. It has the
following fields:

Table 89: CladPoint

Field Type Units Description JSON structure
X float pixels The x-coordinate of the point
y float pixels The y-coordinate of the point
44.2.2 CladRect
The CladRect is used to represent a 2D rectilinear rectangle on an image. It has the following
fields:
Field Type Units Description -Crzabc;:ei(z;ng {e JSON
height float pixels The height of the rectangle structure
width float pixels The width of the rectangle
x_top_left float pixels The x-coordinate of the top-left corner of the

rectangle within the image.

y_top_left float pixels The y-coordinate of the top-left corner of the
rectangle within the image.

44.2.3 PoseStruct
The PoseStruct is used to represent a 3D rectilinear point and orientation on the map. It has the
following fields:

Table 91: PoseStruct

Field Type Units Description
JSON structure

origin_id uint32 Which version of the map this pose is in (0 for
none or unknown). See Chapter 19 for a
description of the mapping origin id.

qo float Part of the rotation quaternion
g1 float Part of the rotation quaternion
g2 float Part of the rotation quaternion
g3 float Part of the rotation quaternion
X float mm The x coordinate

y float mm The y coordinate

z float mm The z coordinate

44.2.4 ResponseStatus

The ResponseStatus is “a shared response message sent back as part of most requests. This will
indicate the generic state of the request.” It has the following fields:

ANKI VECTOR -+ 2021.02.14 134

Table 92:

Field Type Units Description
ResponseStatus JSON

code StatusCode “The generic status code to give high-level insight structure
into the progress of a given message.”

ANKI VECTOR + 2021.02.14 135

The StatusCode is used to indicate state of the request.

Table 93: StatusCode

Name Value Description Enumeration
UNKNOWN 0
RESPONSE_RECEIVED 1 “The message has completed as expected.”
REQUEST_PROCESSING 2 “The message has been sent to the robot.”
OK 3 “The message has been handled successfully at the

interface level.”
FORBIDDEN 100 “The user was not authorized.”
NOT_FOUND 101 “The requested attribute was not found.”
ERROR_UPDATE_IN_PROGRESS 102 “Currently updating values from another call.”

45. ACCESSORIES AND CUSTOM OBJECTS

This section describes the objects that Vector can see and track in his map. Specialized accessories
— the charger and cube — are broken out into their own sections.

See also section 53 Cube and section 59 Interactions with Objects

You too can create custom objects for Vector to... at least see and perceive. Maybe even love.
There are four kinds of custom objects that you can define:

A fixed, unmarked cube-shaped object. The object is in a fixed position and orientation,
and it can’t be observed (since it is unmarked). So there won’t be any events related to this
object. “This could be used to make Vector aware of objects and know to plot a path
around them.”

A flat wall with only a front side,
A cube, with the same marker on each side.

A box with different markers on each side.

A note about object id’s: The object id may change: “a cube disconnecting and reconnecting it's
removed and then re-added to robot's internal world model which results in a new ID.”

The client should employ a timer for each potential visual object. If there isn’t an “object
observed” event received in the time period, it should be assumed “that Vector can no longer see

an object.”

45.1. ENUMERATIONS

The CustomObjectMarker enumerates the marker symbols
The CustomType refers to the one of the 20 possible custom objects that can be defined

The ObjectFamily is an older, now deprecated method, of enumerating the kind of object
(as in, charger, light cube, wall, box, or custom cube).

The ObjectType enumeration is the preferred method of enumerating the kinds of objects

ANKI VECTOR - 2021.02.14

136

451.1 CustomObjectMarker

The CustomObjectMarker is used represent the marker symbol used. The symbols are predefined,
with the images that Vector recognizes included in the SDK. The enumeration has the following

named values:

Name

Value Description Table 94:

CUSTOM_MARKER_UNKNOWN
CUSTOM_MARKER_CIRCLES_2
CUSTOM_MARKER_CIRCLES_3
CUSTOM_MARKER_CIRCLES_4
CUSTOM_MARKER_CIRCLES_5
CUSTOM_MARKER_DIAMONDS_2
CUSTOM_MARKER_DIAMONDS_3
CUSTOM_MARKER_DIAMONDS_4
CUSTOM_MARKER_DIAMONDS_5
CUSTOM_MARKER_HEXAGONS_2
CUSTOM_MARKER_HEXAGONS_3
CUSTOM_MARKER_HEXAGONS_4
CUSTOM_MARKER_HEXAGONS_5
CUSTOM_MARKER_TRIANGLES_2
CUSTOM_MARKER_TRIANGLES_3
CUSTOM_MARKER_TRIANGLES_4
CUSTOM_MARKER_TRIANGLES_5
CUSTOM_MARKER_COUNT

CustomObjectMarker
0 Enumeration

O 00 N O U AW N -

. A A A A A A A
o o0 U1 AW N = O

ANKI VECTOR -+ 2021.02.14 137

45.1.2 CustomType
The CustomType is used to represent the identifier of object that a symbol is attached to. The
enumeration has the following named values:

Name Value Description Table 95: CustomType

Enumeration
INVALID _CUSTOM_TYPE 0

CUSTOM_TYPE_00

-

CUSTOM_TYPE_01 2
CUSTOM_TYPE_02 3
CUSTOM_TYPE_03 4
CUSTOM_TYPE_04 5
CUSTOM_TYPE_05 6
CUSTOM_TYPE_06 7
CUSTOM_TYPE_07 8
CUSTOM_TYPE_08 9
CUSTOM_TYPE_09 10
CUSTOM_TYPE_10 1
CUSTOM_TYPE_11 12
CUSTOM_TYPE_12 13
CUSTOM_TYPE_13 14
CUSTOM_TYPE_14 15
CUSTOM_TYPE_15 16
CUSTOM_TYPE_16 17
CUSTOM_TYPE_17 18
CUSTOM_TYPE_18 19
CUSTOM_TYPE_19 20
CUSTOM_TYPE_COUNT 20

ANKI VECTOR -+ 2021.02.14 138

45.1.3 ObjectFamily
The ObjectFamily is a deprecated method used to represent the type of object that a symbol is
attached to. ObjectType should be used instead, where possible. The enumeration has the
following named values:

Table 96: ObjectType

Name Value Description .
Enumeration
INVALID _FAMILY 0 This value represents a kind of object that is not
properly set.
UNKNOWN_FAMILY 1 This value is used when there is an object, but its
kind is not known.
BLOCK 2 This is the identifier used for blocks/cubs other
than the companion-cube
LIGHT_CUBE 3 This is the identifier used for the companion-cube
CHARGER 4 This is the identifier used for the home charging
station.
CUTSTOM_OBJECT 7 This is the identifier used for as custom object
definition.
OBJECT_FAMILY_COUNT 7
45.1.4 ObjectType

The ObjectType is used represent the type of object that a symbol is attached to. The enumeration
has the following named values:

Table 97: ObjectType

Name Value Description .
Enumeration

INVALID _OBJECT 0 This value represents an object id used when there

isn’t an object associated.
UNKNOWN_OBJECT 1 This value is used when there is an object, but it is

not recognized.
BLOCK_LIGHTCUBE1 2 This is the identifier used for the companion-cube
CHARGER_BASIC 6 This is the identifier used for the home charging

station.
FIRST_CUSTOM_OBJECT_TYPE 15 The custom objects all have types greater than or

equal to this.

ANKI VECTOR -+ 2021.02.14 139

45.2. EVENTS
These are the events that are sent to inform the application of an objects state (and availability).
452.1 ObjectEvent
The ObjectEvent event is sent (see Event message) when the state of an object has changed. The
structure has one (and only one) of the following fields:
Field Type Description Table 98: ObjectEvent
JSON structure
cube_connection_lost CubeConnectionLost This event is sent when cube no longer is connected
via Bluetooth LE.
robot_observed_object RobotObservedObject This even is sent the object is visually seen by
Vector.
object_available ObjectAvailable This event is sent when cube a Bluetooth LE

connection to the cube is established.

object_connection_state ObjectConnectionState The information about the Bluetooth LE identity of
the cube, and whether is connected (or not).

object_moved ObjectMoved The object has changed position.

object_stopped_moving ObjectStoppedMoving The object had change position previously, but has
now come to rest.

object_tapped ObjectTapped The cube was tapped.

object_up_axis_changed ObjectUpAxisChanged The object was rotated and has a new upward face.

45.2.2 ObjectAvailable

The ObjectAvailable event is sent (see section 45.2.1 ObjectEvent) when Vector has received

Bluetooth LE advertisements from the object (cube).

See also section 53.2.2 CubeConnectionLost

This event structure has the following fields:
Field Type Units Description Tat->le 99: .

ObjectAvailable JSON
factory_id string The identifier for the cube. This is built into the structure
cube.

45.2.3 ObjectConnectionState

The ObjectConnectedState event is to “indicate that a cube has connected or disconnected to the
robot. This message will be sent for any connects or disconnects regardless of whether it
originated from us or underlying robot behavior.”

See also section 53.2.2 CubeConnectionLost

ANKI VECTOR -+ 2021.02.14 140

This event structure has the following fields:

Field Type Units Description Tat.>le 100:
ObjectConnectedState
connected bool True if Vector has a Bluetooth LE connection with JSON structure
the Cube.
factory_id string The identifier for the cube. This is built into the
cube.
object_id uint32 The identifier of the object that Vector is (or was)
connected to.
object_type ObjectType The type of object referred to.
45.2.4 ObjectMoved
The ObjectMoved event is sent (see section 45.2.1 ObjectEvent) when an object has changed its
position. The structure has the following fields:
Field Type Units Description Tat?le 1oL
ObjectMoved JSON
object_id uint32 The identifier of the object that moved. structure
timestamp uint32 The time that the event occurred on. The format
is milliseconds since Vector’s epoch.
45.2.5 ObjectStoppedMoving
The ObjectStoppedMoving event is sent (see section 45.2.1 ObjectEvent) when an object previously
identified as moving has come to rest. The structure has the following fields:
Field Type Units Description Tat?le 102: .
ObjectStoppedMoving
object_id uint32 The identifier of the object that was moving. JSON structure
timestamp uint32 The time that the event occurred on. The format
is milliseconds since Vector’s epoch.
45.2.6 ObjectUpAxisChanged
The ObjectUpAxis event is sent (see section 45.2.1 ObjectEvent) if the orientation of the object has
significantly changed, leaving it with a new face upward. The structure has the following fields:
Field Type Units Description Tat.>le 103: .
ObjectUpAxis JISON
object_id uint32 The identifier of the object whose axis has structure
changed.
timestamp uint32 The time that the event occurred on. The format
is milliseconds since Vector’s epoch.
up_axis UpAxis The orientation of object, represented as which

axis is pointing upwards

ANKI VECTOR + 2021.02.14 141

The UpAxis is used represent the orientation of an object. The enumeration has the following
named values:

Table 104: UpAxis

Name Value Description .
Enumeration
INVALID_AXIS 0 The orientation of the object is not known.
X_NEGATIVE 1 The positive direction along the body’s x-axis is
upward.
X_POSITIVE 2 The negative direction along the body’s x-axis is
upward.
Y_NEGATIVE 3 The positive direction along the body’s y-axis is
upward.
Y_POSITIVE 4 The negative direction along the body’s y-axis is
upward.
Z_NEGATIVE 5 The positive direction along the body’s z-axis is
upward.
Z_POSITIVE 6 The negative direction along the body’s z-axis is
upward.
NUM_AXES 7
45.2.7 RobotObservedObiject
The RobotObservedObject event is sent when “an object with [the] specified ID/Type was seen at a
particular location in the image and the world.” This event structure has the following fields:
. . I Table 105:
Field Type Units Description
yp P RobotObservedObject
img_rect CladRect The position of the object within the vision image. JSON structure
is_active uint32

object_family

object_id

object_type

pose

timestamp

top_face_orientation_rad

ObjectFamily

int32

ObjectType
PoseStruct

uint32

float radians

Deprecated. “Use ObjectType instead to reason
about groupings of objects.”

The identifier of the object that has been seen.
Note that this is signed (int32 instead of uint32) for
internal compatibility reasons.

The type of object referred to.
The observed pose of this object. Optional.

The time that the object was most recently
observed. The format is milliseconds since
Vector’s epoch.

“Angular distance from the current reported up
axis. “ “absolute orientation of top face, iff
isActive==true”

ANKI VECTOR - 2021.02.14

142

45.3.

CREATE FIXED CUSTOM OBIJECT

This command “creates a permanent custom [cube-shaped] object instance in the robot's world”

except this object has “no markers associated with it.” The object “will remain in the specified

pose as an obstacle forever (or until deleted).” The object can’t be observed, and won’t create any
events related to being observed. The fixed, custom object can “be used to make Vector aware of

objects and know to plot a path around them.”

Post: “/v1/create_fixed_custom_object”

45.3.1 Request
The CreateFixedCustomObjectRequest structure has the following fields:
Field Type Units Description
pose PoseStruct The position and orientation of this object.
X_size_mm float mm The size of the object that the marker symbol is on,
along the x-axis.
y_size_mm float mm The size of the object that the marker symbol is on,
along the y-axis.
z_size_mm float mm The size of the object that the marker symbol is on,
along the z-axis.
45.3.2 Response
The CreateFixedCustomObjectResponse structure has the following fields:
Field Type Description
object_id uint32 The object identifier assigned to this object.
status ResponseStatus A generic status of whether the request was able

to be carried out, or an error code indicating why
it was unable to be carried out.

Table 106:
CreateFixedCustomObje
ctRequest JSON
structure

Table 107:
CreateFixedCustomObje
ctResponse JSON
structure

ANKI VECTOR -+ 2021.02.14 143

45.4. DEFINE CUSTOM OBIJECT

“Creates a custom object with distinct custom marker(s)”” on one or more its faces. This can create
awall, a box, a cube (similar to a box, but each side is the same size as every other, and has the
same marker). Once the object has been created, “the robot will now detect the markers associated
with this object and send a RobotObservedObject message when they are seen. The markers must
be placed in the center of their respective sides.”

45.4.1

Note: “No instances of this object are added to the world until they have been seen.”

See also Create Fixed Custom Object, Delete Custom Objects

Post: “/v1/define_custom_object”

Request

The DefineCustomObjectRequest structure has the following fields:

Field

Type Units

Description

Table 108:
DefineCustomObjectReq

custom_type

is_unique

custom_box

custom_cube

custom_wall

CustomType

bool

CustomBoxDefinition

CustomCubeDefinition

CustomWallDefinition

The object type to be assigned to this object.

If true, “there is guaranteed to be no more than
one object of this type present in the world at a
time.”

uest JSON structure

The definition of a box with different markers on

each side.

The definition of a cube, with the same marker on

each side.

The definition of a flat wall with only a front side.

Note: only one of “custom_box,” “custom_cube,” or “custom_wall” can be used in the request.

ANKI VECTOR

- 2021.02.14 144

The CustomBoxDefinition “defines a custom object of the given size with the given markers

centered on each side.” The structure has the following fields:

Field

Type Units

Description

marker_back

marker_bottom

marker_front

marker_left

marker_right

marker_top

marker_height_mm
marker_width_mm

X_Size_mm

y_size_mm

Z_size_mm

CustomObjectMarker

CustomObjectMarker

CustomObjectMarker

CustomObjectMarker

CustomObjectMarker

CustomObjectMarker

float mm
float mm

float mm

float mm

float mm

The marker symbol used on the back surface of the
box. This marker must be unique (not used by any
of the other side’s on this box or in any other
shape).

The marker symbol used on the bottom surface of
the box. This marker must be unique (not used by
any of the other side’s on this box or in any other
shape).

The marker symbol used on the front surface of the
box. This marker must be unique (not used by any
of the other side’s on this box or in any other
shape).

The marker symbol used on the left-hand side of

the box. This marker must be unique (not used by
any of the other side’s on this box or in any other
shape).

The marker symbol used on the right-hand side of
the box This marker must be unique (not used by

any of the other side’s on this box or in any other

shape).

The marker symbol used on the top surface of the
box. This marker must be unique (not used by any
of the other side’s on this box or in any other
shape).

The height of the marker symbol.
The width of the marker symbol.

The size of the object, along the x-axis, that the
marker symbol is on.

The size of the object, along the y-axis, that the
marker symbol is on.

The width of the object, along the z-axis, that the
marker symbol is on.

The CustomCubeDefinition “defines a custom cube of the given size.” The structure has the

following fields:

Field

Type Units

Description

marker

marker_height_mm
marker_width_mm

size_mm

CustomObjectMarker

float mm
float mm

float mm

The marker symbol used on all of the cube
surfaces; “the same marker [must] be centered on
all faces.”

The height of the marker symbol
The width of the marker symbol

The height, width, and depth of the object that the
marker symbol is on.

Table 109:
CustomBoxDefinition
JSON structure

Table 110:
CustomCubeDefinition
JSON structure

ANKI VECTOR -+ 2021.02.14 145

The CustomWallDefinition “defines a custom wall of the given height and width... The wall's
thickness is assumed to be 1cm (and thus there are no markers on its left, right, top, or bottom).”
The structure has the following fields:

Field Type Units Description Table 111. .
CustomWallDefinition
marker CustomObjectMarker The marker symbol used on the wall surfaces; “the ~ JSON structure
same marker centered on both sides (front and
back)”
marker_height_mm float mm The height of the marker symbol
marker_width_mm float mm The width of the marker symbol
height_mm float mm The height of the object that the marker symbol is
on.
width_mm float mm The width of the object that the marker symbol is
on.
45.4.2 Response
The DefineCustomObjectResponse type has the following fields:
Field Type Description Tab.le 12 .
DefineCustomObjectRe
status ResponseStatus A generic status of whether the request was able sponse JSON structure

to be carried out, or an error code indicating why
it was unable to be carried out.

success bool True if the thumbnail was successfully retrieved,;
otherwise there was an error.

ANKI VECTOR -+ 2021.02.14 146

45.5. DELETE CUSTOM OBIJECTS

This command “causes the robot to forget about custom objects it currently knows about.” All
custom objects that match the given pattern are removed.

Post: “/v1/delete_custom_objects”

4551 Request
The DeleteCustomObjectsRequest type has the following fields:
Field Type Description Table 113: .
DeleteCustomObjectsRe
mode CustomObjectDeletionMode The kind of custom objects to remove. quest JSON structure
The CustomObjectDeletionMode is used to specify which kinds of custom objects should be deleted
from the internal database. The enumeration has the following named values:
Name Value Description Table 114:, .
CustomObjectDeletionM
DELETION_MASK_UNKNOWN 0 ode Enumeration
DELETION_MASK_FIXED_CUSTO 1 Delete the custom objects that are “fixed” — the
M_OBJECTS ones that don't have any marker symbols.
DELETION_MASK_CUSTOM_MARK 2 Delete the objects with marker symbols.
ER_OBJECTS
DELETION_MASK_ARCHETYPES 3 Deletes everything but the fixed objects and their
marker symbols.
45.5.2 Response
The DeleteCustomObjectsResponse type has the following fields:
Field Type Description Table 115: X
DeleteCustomObjectsRe
status ResponseStatus A generic status of whether the request was able sponse JSON structure

to be carried out, or an error code indicating why
it was unable to be carried out.

ANKI VECTOR -+ 2021.02.14 147

46. ACTIONS AND BEHAVIOUR

Actions and “behaviors represent a complex task which requires Vector's internal logic to [carry
out]. This may include combinations of animation, path planning or other functionality.”

See also section 53 Cube, and section 59 Interactions with Objects, which covers actions/behaviors
that involve interacting with objects and faces.

Actions often have tags (an arbitrary value given to it by the SDK application), and have result
code. And action can be cancelled using this tag. Behaviors do not have tags.

Behaviors are part of the behavior tree, and can potentially submit other behaviors based on
prevailing conditions. See Chapter 27 for more detail on behaviors.

Behaviors are submitted at the priority level associated with the connection. If the connection has
released control, requested behaviors and actions are ignored. When control is requested, a priority
level is requested by the SDK application at the time. Behaviors requested by Vector’s internal Al
with a lower priority will be ignored; behaviors with a high priority will take control (causing the
SDK to lose control). By giving up control, or changing the control priority the SDK can
effectively cancel the behavior it requested.

Request control at the RESERVE_CONTROL priority level “can be used to suppress the ordinary
idle behaviors of the Robot and keep Vector still between SDK control instances. Care must be
taken when blocking background behaviors, as this may make Vector appear non-responsive.”

See chapter 27 Behaviors for a description of behaviors and priorities.

46.1. ENUMERATIONS

46.1.1 ActionTagConstants
This is the range of numbers in which we can assign an identifier for the action so that we can
cancel it later.
Name Value Description
INVALID_SDK_TAG 0
FIRST_SDK_TAG 2000001 An assigned action tag must be equal to or greater
than this value.
LAST_SDK_TAG 3000000 An assigned action tag must be less than or equal to
this value.

46.1.2 BehaviorResults

The BehaviorResults is used TBD. The enumeration has the following named values:
Name Value Description
BEHAVIOR_INVALID _STATE 0
BEHAVIOR_COMPLETE_STATE 1

BEHAVIOR_WONT_ACTIVATE_STATE 2

Table 116:
ActionTagConstants
Enumeration

Table 117:
BehaviorResults
Enumeration

ANKI VECTOR -+ 2021.02.14 148

46.2. EVENTS

46.2.1 FeatureStatus

The FeatureStatus status event is sent as Vector’s behavior focus changes. The structure has the
following fields:

Field Type Description Table 118:
FeatureStatus JSON
feature_name string The current active behaviour (feature). See structure
Appendix I, table Table 637: The Al behaviour
features for a list and description.
source string Where the direction to do this behavior came from:
“Voice”, “App”, “Al”, “Unknown”. Voice is for
responses to voice commands and intents; “App” is
for application submitted intents; Al is behaviors
initiated by the high-level Al.
Note: for Vector-OS feature flags, see section 57 Features & Entitlements.
46.2.2 Stimulationinfo
The StimulationInfo event is used report events that impact Vector’s emotion state and overall
stimulation level. The structure has the following fields:
Field Type Units Description Ta.ble 11_9:
Stimulationinfo JSON
accel float mmy/sec? The acceleration at the time of the stimulation. structure
emotion_events string[] The list of event names related to the emotion.

The names of emotion events and their description
can be found in Appendix K Table 641: The
emotion event names. Optional.

max_value float The minimum stimulation value. Typically 1
min_value float The maximum stimulation value. Typically 0
value float The stimulation value after applying the events.
value_before_event float The stimulation value before the event(s).

“matches value if there were no emotion events”

velocity float mm/sec The speed at the time of the stimulation.

ANKI VECTOR - 2021.02.14 149

46.3. STRUCTURES

46.3.1 ActionResults
“The possible results of running an action.” The structure has the following fields:
Field Type Description Z??iloenll?igil lts ISON
code ActionResultCode The results structure
The ActionResultCode is used to provide “the possible results of running an action.”
Name Value Description ;zztl)iéimmode
ACTION_RESULT_SUCCESS 0 “Action completed successfully.” Enumeration
ACTION_RESULT_RUNNING 16777216 “Action is still running.”
/;\A(IZC?;'ION_RESULT_CANCELLED_ WHILE_RUNN 33554432 “Action was cancelled by SDK request”
NOT_STARTED 33554433 “Initial state of an Action to indicate it has not yet
started.”
ABORT 50331648 “Action aborted itself (e.g. had invalid attributes, or
a runtime failure).”
ANIM_ABORTED 50331649 “Animation Action aborted itself (e.g. there was an
error playing the animation).”
BAD_MARKER 50331650 “There was an error related to vision markers.”
BAD_MESSAGE_TAG 50331651 “There was a problem related to a subscribed or
unsupported message tag”
BAD_OBJECT 50331652 “There was a problem with the Object ID provided
(e.g. there is no Object with that ID).”
BAD_POSE 50331653 “There was a problem with the Pose provided.”
BAD_TAG 50331654 “The SDK-provided tag was bad.”
CHARGER_UNPLUGGED_ABORT 50331655 “Vector is on the charger but cannot sense the
contacts. Charger may be unplugged.”
CLIFF_ALIGN_FAILED_TIMEOUT 50331656
CLIFF_ALIGN_FAILED_NO_TURNING 50331657
CLIFF_ALIGN_FAILED_OVER_TURNING 50331658
CLIFF_ALIGN_FAILED_NO_WHITE 50331659
CLIFF_ALIGN_FAILED_STOPPED 50331660
FAILED_SETTING_CALIBRATION 50331661 “Shouldn't occur outside of factory.”
FOLLOWING_PATH_BUT_NOT_TRAVERSING 50331662 “There was an error following the planned path.”
INTERRUPTED 50331663 “The action was interrupted by another Action or
Behavior.”
INVALID_OFF_TREADS_STATE 50331664 “The robot ended up in an "off treads state" not
valid for this action (e.g. the robot was placed on its
back while executing a turn).”
MISMATCHED_UP_AXIS 50331665 “The Up Axis of a carried object doesn't match the

desired placement pose.”

ANKI VECTOR -+ 2021.02.14 150

NO_ANIM_NAME
NO_DISTANCE_SET
NO_FACE

NO_GOAL_SET
NO_PREACTION_POSES

NOT_CARRYING_OBJECT_ABORT

NOT_ON_CHARGER_ABORT

NULL_SUBACTION
PATH_PLANNING_FAILED ABORT
PICKUP_OBJECT_UNEXPECTEDLY_MOVING

SEND_MESSAGE_TO_ROBOT_FAILED
STILL CARRYING_OBJECT
TIMEOUT

TRACKS_LOCKED

UNEXPECTED_DOCK_ACTION

UNKNOWN_TOOL_CODE
UPDATE_DERIVED_FAILED

VISUAL_OBSERVATION_FAILED

SHOULDNT_DRIVE_ON_CHARGER

RETRY

DID _NOT_REACH_PREACTION_POSE

FAILED_TRAVERSING_PATH
LAST_PICK_AND_PLACE_FAILED

MOTOR_STOPPED_MAKING_PROGRESS

NOT_CARRYING_OBJECT_RETRY

NOT_ON_CHARGER_RETRY

PATH_PLANNING_FAILED _RETRY

PLACEMENT_GOAL_NOT_FREE

50331666
50331667
50331668

50331669
50331670

50331671

50331672

50331673
50331674
50331675

50331676
50331677
50331678

50331679

50331680

50331681
50331682

50331683

50331684

67108864

67108865

67108866
67108867

67108868

67108869

67108870

67108871

67108872

“No valid Animation name was found.”
“An invalid distance value was given.”

“There was a problem with the Face ID (e.g. Vector
doesn't know where it is).”

“No goal pose was set.”

“No pre-action poses were found (e.g. could not get
into position).”

“No object is being carried, but the action requires
one.”

“Vector is expected to be on the charger, but is
not.”

“No sub-action was provided.”
“Vector was unable to plan a path.”

“The object that Vector is attempting to pickup is
unexpectedly moving (e.g it is being moved by
someone else).”

“Shouldn't occur in SDK usage.”
“Vector is unexpectedly still carrying an object.”

“The Action timed out before completing
correctly.”

“One or more movement tracks (Head, Lift, Body,
Face, Backpack Lights, Audio) are already being
used by another Action.”

“There was an internal error related to an
unexpected type of dock action.”

“Shouldn't occur outside of factory.”

“There was a problem in the subclass's update on
the robot.”

“Vector did not see the expected result (e.g. unable
to see cube in the expected position after a related
action).”

“Action is not permitted on the charger.”

“The Action failed, but may succeed if retried.”
“Failed to get into position.”

“Failed to follow the planned path.”

“The previous attempt to pick and place an object
failed.”

“The required motor isn't moving so the action
cannot complete.”

“Not carrying an object when it was expected, but
may succeed if the action is retried.”

“Driving onto the charger failed, but may succeed
if the action is retried.”

“Vector was unable to plan a path, but may succeed
if the action is retried.”

“There is no room to place the object at the desired

ANKI VECTOR - 2021.02.14

151

PICKUP_OBJECT_UNEXPECTEDLY_NOT_MOV
ING

STILL ON_CHARGER
UNEXPECTED_PITCH_ANGLE

67108873

67108874
67108875

destination.”

“The object that Vector thought he was lifting
didn't start moving, so he must have missed.”

“Vector failed to drive off the charger.”

“Vector's pitch is at an unexpected angle for the
Action.”

ANKI VECTOR

- 2021.02.14 152

46.4. BEHAVIOR CONTROL AND ASSUME BEHAVIOR CONTROL

These commands are used to setup the ability to submit actions and behaviors into Vector’s Al
system. This control is needed “to be able to directly control Vector's motors, override his screen,
play an animation, etc.”

The request specifies a priority level. After control is granted, Vector’s Al will suppress internal
behaviors with a lower priority. When a behavior is commanded by the SDK, it will be associated
with the priority level selected here. Note: the priority level is represented by a number where
lower values represent higher priorities, and higher values represent lower priorities. See Chapter
28 for a detailed description of behavior priorities.

There are two entry points: AssumeBehaviorControl and BehaviorControl. Both employ the same
request and response message structures. The response is a stream that includes information when
the control was acquired, and lost.

Post: “/v1/assume_behavior_control”

46.4.1 Request

The BehaviorControlRequest is used to request control of Vector’s behavior stream, and to release
it. This structure includes one (and only one) of the following fields:

Field Type Description Table ,122:
BehaviorControlRequest
control_release 1 This is used to when the application is releasing JSON structure
control back to Vector; the value is an empty
dictionary.
control_request ControlRequest This is used when the application is requesting
control of Vector; see below for a description.
The ControlRequest is used to request control of the behavior system at a given priority. This
structure has the following fields:
Field Type Description Table 123:
ControlRequest JSON
priority Priority This is the priority level that should be employed structure

for requested behaviors; internal behaviors with a
priority lower than this will be suppressed.

The Priority enumeration has the following named priority level values:

Table 124: Priority level

Name Value Description)
Enumeration
UNKNOWN 0 “Unknown priority. Used for versions that doesn’t
understand old priority levels.”
OVERRIDE_BEHAVIORS 10 “Highest priority level. Suppresses most automatic
physical reactions, use with caution.”
DEFAULT 20 “Normal priority level. Directly under mandatory
physical reactions.”
RESERVE_CONTROL 30 This priority level is “used to disable idle

behaviors.” Tt is intended to “enable long-running
SDK control between script executions. Not.. for
regular behavior control.”

ANKI VECTOR -+ 2021.02.14 153

46.4.2 Response

The response is a stream of BehaviorControlResponse structures that includes information when the
control was acquired, and lost. This structure includes one (and only one) of the following fields:

Field

Type U