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accident event that caused a harm 

ACID 
atomicity 
consistency 
isolation durability 

atomicity: all of the operations in the transaction will complete or none will 

consistency: the database will be in a consistent state when the transaction begins and 

ends 

isolation: the transaction behaves as if it is the only one being performed 

durability: when completed, the transaction’s operations will not be reversed (that is a 

separate action). 

see also eventual consistency. 

airplane safety The number of hull losses per million flights. 

Concord (now: 11.64 

737: ~1 

ARM-R One is upside down and rotate 90deg to eliminate some upsets from common electrical 

spike. 

Ashby’s law of 
requisite variety 

“Any controller, to be effective, must have sufficient variety in its coping mechanisms 

to counter the variety of actions that could be exhibited by the system to be controlled.” 

See also fast fail 

assurance “justified measures of confidence that the system functions as intended” and is 

reasonably free of flaws. 

Uses a clear, comprehensive, defensible argument 

analysis analysis tends to affirm (justify) that the system is safe, versus 

analysis that test the system to find the limits of its safety 

AT&T modular redundancy; when it deviates from very narrow constraints, it shuts down; 

shutdown is announced. 

availability “percentage of time during which the system is operational and conforms to 

specification.” 

See also integrity aspects 

 




MTTF

MTTF  MTTR

 

see also Gompertz law of mortality, MTTF. MTTR, reliability, Weibull power law 

block sparing Block sparing is a part of a fault recovery and masking technique, usually done at a file-

system level. When a block is discovered to be going bad: 

1. The block's data is duplicated to another disk block, 

2. The data structures referring to the block are updated, and 

3. The block is marked bad 

see fault masking, SMART 

Byzantine failure A component – software module, computer, router, etc. – fails but keeps on operating. 

This failure might be a software bug, hardware fault, or outright sabotage. In packet 
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networks, message processing, or data flow systems, this type of failure can be very hard 

to track down.  Examples include misrouting messages, changing fields inappropriately, 

corrupt data, perform correctly – except for data from one user, or flood the network 

with garbage 

See also failure 

common mode 
rejection ratio 

A measure of an instruments ability to ignore or reject interference from a voltage 

common to its input terminals relative to ground.  Usually expressed in dB. 

complexity “A high level of complexity, unless it is there to increase robustness, poses more threats to 

system operation.” 

“A high level of coupling (sometimes considered a form of complexity) between 

components indicates a high level of interdependence: a change in a system component will 

ripple through the system via the coupling paths.” 

communication 
complexity 

“How many operations or messages need to be generated to perform some action.” 

computational 
complexity 

“How well a given procedure can be analytically described or determined.” 

time complexity “How long (how many iterations or cycles) an operation takes.” 

conflict catcher A well-regarded product for the Macintosh, thru System 9; similar techniques are available 

for other systems as well, and the techniques are useful: 

 Rollbacks 

 Testing 

 Automatic detection of conflicts 

 Metrics 

See also error correction, journaling 

coupling Affects flexibility in system, constraints on timing, operation sequencing, acceptable input 

data ranges. 

loosely coupled If ‘A’ fails B can go on with it’s operations; it isn’t critical; 

very flexible assumptions, flexible timing and sequencing, flexible time constraints. 

tightly coupled Opposite; less flexible in how it handles errors / faulty.  Real time or very tight control 

systems. 

criteria absolute: compliance with target; often quantitative 

relative: relative to previous or existing XYZ (e.g. product) 

reductive: “as low as reasonably possible” (reduce it as much) 

critical 
component 

Any component within a critical device whose failure to perform can reasonably be 

expected to cause failure or decline in safety or effectiveness in a critical device. 

see also critical device. 

critical device A critical device is one whose failure to perform can reasonably be expected to result in 

injury. 

see also critical components, critical operation 

critical operation A critical operation is any operation – that if improperly performed – can reasonably be 

expected to impact a critical device: such as causing failure, impact its safety, or affect its 

effectiveness. 

see also critical component, critical device 

danger index = Safety Index + C 

where C is a normalizing constant (say 10) 

Ogmjen Prnjat, Lionel Sacks, 
“Integrity Methodology for 
Interoperable 
Environments” IEEE 
Communications, May 1999 
p126-1 
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see also safety index 

deadlock “Block in a state expecting a message or event which will not or cannot occur.” 

See also livelock 

defect 
prevention 

Functional specification defects, system design defects, programming defects, 

maintainability, root cause analysis.  Critical success factors for peer reviews.  Inspections, 

how to do them.  How create and use specifications to minimize defects, ways to track and 

control defects. 

dependability Decide what components (software, hardware, etc) will be relied on.  Identify the critical 

properties, determine the level of confidence required.  The properties: what are they and 

how atomized are they? 

dual-string 
configuration 

any failed component in one string can be replaced by its twin in the other string. 

dynamic fault 
recovery 

If a fault in a module is detected, the modules is disabled and a spare module is enabled.  A 

series of actions is then performed to resume the normal operation. 

electronic 
components 
failure rate 

t_0 -> t_s (settling time) 

t_s -> oo R(t) 

Reliability with time 

  tGetR   

G = constant 

Lambda = sum of the failure rates of all constituent components 

1/lambda = mean time between failure 

environmental 
testing 

Compatibility testing, performance and stress testing.  Security & controls testing, database 

testing, software testing.  Error and disaster recovery testing.  GUI testing, Client/server 

testing.  Internet based app testing.  Reliability testing. 

error control 
strategy 

Specifies how error are determined (eg time-outs, explicit notifications) and what will be 

done when an error occurs (usually a retry). 

error handling 
systematic 

Detecting when an error/exception condition occurs 

Determining where and what should handle such conditions 

The actual stop or recovery actions.  This should be as graceful as possible.  Should not exit 

the program except when absolutely necessary. 

Some techniques employ a combination of codes must uniquely identify the path to the 

original failure. 

error codes Error codes are often returned back through several levels of function calls until they are 

handled appropriately.  The need to preserve various error states for higher layers (push/pop 

errno). 

error messages There may be a clear relationship between user action and error.  Such as the system’s 

design anticipated this kind of error and reports cryptic messages, deceptive messages, 

misused, unspecific.  Worse, these messages and errors are never human tested.  The other 

kinds are errors the design didn't anticipate: Here is something bad, here are tea leaves.  

Hope you can figure it out. 

exception handling A type of error and distributing. 

longjmp/setjmp.  Return through several layers of calls, leaves global state as it was of at 

longjmp() time, not setjmp() time. 

Prnjat ibid 
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Exceptions – try catch, throw.  Like longjmp/setjmp in many regards.  Calls destructors of 

locally declared objects for each level until gets back to catch spot. 

error rate For a given span of operation, testing only provide reliability estimates to ~104^-4 errors/hour 

(Littlewood & Stringini 1993) 

Avionics, nuclear power require better than 10^-9 errors/hour 

eventual 
consistency 

consistency: client perceives that a set of operations has occurred all at once 

availability: every operation must terminate in a defined response (pass, fail, etc.) 

partition tolerance: operations will complete, even if individual components are unavailable (e.g. 

it fails). 

see also ACID 

fail safe Under failure modes do safe things.  Default deny/permit 

Weakest link :strength in proportion to risk 

Choke point: allows focus to within bounds that can be dealt with 

Least privilege: minimal privilege to do the task, no more. 

Defense in depth: a variety of protective mechanisms to produce defense. 

Diversity of defenses: a variety of methods and approaches to defense. 

Universal participation: all must participate. 

Simplicity. 

failure 
engineering for 

FMEA, fault tree 

Employees tools and approaches simultaneously.  (Note: simultaneous events are often so hard to 

analyze rationally that they are examined only as an exception—if they are likely to occur) 

Reduces probability of fault event 

Reduces direct impact of fault 

Recover from fault 

Note the deterioration or degradation of components and the functionality is often talked about 

separately. 

see also error correction, error handling 

fast fail Determine out-of-bounds and disengage.  This is often very useful, during development, for 

making the underlying mechanism robust, rather than the fault-handling mechanism; this is 

useful when the range of variety of disturbances is unknown.  It is discouraged with released 

products. 

see also Ashby’s law of requisite variety 

fast recovery Identify the 20% you need for fast recovery 1 vs the 80% infrequently used.  Residency bits, 

locality of reference tools, used to identify frequency of use. 

fault What you wanted didn't happen. 

Topics: Detection, Isolation, Localization (finding it), Notification, Mitigation (Protection and 

Restoration) 

Fault model; fault hypothesis, fault containment unit 

fault avoidance Prevents faults (so they don’t have to be handled) thru estimation, forecasting and prevention.  

Limit the introduction of faults during the system construction.  The approach includes good 

specifications, good programming practices & discipline, extensive & repetitive reviews & 

analysis, testing. 

prevention: reduces likelihood of faults occurring before the system becomes operational 

removal: find and remove causes of errors 

forecasting: techniques that estimate the presence, creation and consequences of faults 
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fault capture Often system trace. In emulation environment; in production environment with hardware support; 

in production with no hardware support. See trace 

fault domain  

fault handling What you do to make it right.  This may require detection ,identification, correction (diagnosis, 

masking, recovery), and communication (documentation, labeling, notification, and logging) 

Error:  A component did not deliver results it was expected to.   Either does task or provides that 

it did not and a summation of why.  Multi-case: provides for another route to get result originally 

requested. 

The failure should be conservative and do no harm.  Roll back to an unharmed state. 

Tradeoff: how much time are you allowed between detecting and the time you must have the 

issue corrected? 

Responses to restore after a fault: 

1. Well-defined procedures that require overall coordination (within area of restoration) 

2. Tools to aid operators & area coordinators execute operating procedures & make proper 

decisions 

3. Regular training sessions of a varied nature 

Handling: 

1. Detect fault e.g. usually with a redundancy of some form, timeout, or a degradation in 

performance.  Note exceptions have issues; try to construct them in a safe manner. 

2. Go back to safe state.  Dump out crud, eg trace buffers.  Try alternate logic.  If nothing 

worked report to caller.  Eventually that is step 3. 

3. Error messages. See error handling 

fault masking The customer doesn't know what you did to do right by him, but gets good service.  Usually 

accomplished thru fault handling. 

fault prevention Structured design, static analysis (e.g. lint), Rigorous design rules, Quality Control, good Design 

practices. 

Normal conditions, and continued operation. Parameter specifications. 

Shutdown operations. Parameter specifications. 

fault tolerance Fault tolerance keeps system going in the face of faults by protecting against and compensating 

for faults.  The techniques include: watchdog timers, periodic resets, reasonableness and 

acceptability checks, design diversity, and data diversity 

n-fault tolerant: can tolerate n failures without degradation. 

FMEA 
failure mode 
effects analysis 

Look at schematic and graph of hardware.  For each element, ask: 

What would if element failed? e.g. Completely fails, of 25% value shift. 

What if link to element fails (e.g. stuck high, stuck low, or open)? Looks at connection to node.   

Does not ask how it could fail; assumes it does.  Only a SPOF method 

Because schematics can get large, often only a subset is examined.  The output or safety related 

sections.  The items of designer or developer concern.  Items that came out of the above. 

Some components (to its input) have defined FMEA results.  Many do not. 

formal methods “Formal methods used in developing computer systems are mathematically based 

techniques for describing system properties.  Such formal methods provide frameworks 

within which people can specify, develop, and verify systems in a systematic… manner.” 

 “Formal methods are based on mathematics but are not entirely mathematical… [They 

attempt to] codify the customer’s informally state requirements… [and] map the real 

world to some abstract representation of it.” 

hazard circumstances causing an incident or accident 

IEEE Computer, September 
1990 p8 

IEEE Computer, September 
1990 p19-20 



R E L I A B I L I T Y  ·   2 0 1 8 . 0 8 . 1 3   6 
 

incident event that did not result in a harm 

integrity See availability, feature integration, journaling, liveness, performance, reliability, 

resilience, robustness, safety, scalability, security 

operational level Requirements to “minimize feature interactions can be achieved through thorough 

interconnection and interoperability testing, following a defined set of scenarios.  A high 

level of resilience and robustness can be achieved performing extensive test in test beds, 

simulating possible behaviour of the environment.” 

system level Behaviour modeling, reachability analysis, livelock/deadlock detection techniques. “data 

coherence policies supporting atomicity, consistency, isolation, and durability of 

transactions.” 

integrated level “to maximize the computational and data complexity system metrics” 

unit level Performance measurements. 

interactions Dependencies between components.  Linear (simple) interaction: components only affect 

others functionally downstream.  Complex: interact with many others in many other parts 

of the system; hard to understand & predict behaviour.  Complex + tightly coupled: 

promotes accidents. 

interruptions  “The nature of the interruption 

 “Any effects of the interruption 

 “And parameters that can vary from one instance of the interruption to the 

next 

 “How the interruption can be detected 

 “Which actions the interruption can interrupt 

 “How to respond to the interruption; especially how or whether to resume 

the interrupted process.” 

journaling 
roll-back 

Why? 

 To catch conflicts with device driver and configurations 

 System recovery 

 Databases 

 Backup emergency restore 

 Scroller for going back in time. 

livelock “oscillates between a closed set of states” 

See also deadlock 

liveness “That something will, eventually, happen.” 

load What to do when the load is too high (or will become too high) to service.  1: load 

shedding, direct.  RED, disable lower priority services, stop servicing some customers. 

2. indirect: raise rates, RED which indirectly signals to others to stop, ask to reduce load.  

3. Add more capacity, lease or purchase processors, etc. 

shedding Needs to decide what to shed 

monitor A control program that oversees the allocation of resources among a set of user 

programs. 

boot monitor A control program used in the boot process, and may include a user directed mode 

debug monitor A user directed, simple ‘debugger’ tool 

hypervisor Hierarchy of supervisors in IBM mainframes 

kernel security Tracks privileges, users identifiers, decides if an action can be carrier out; manages page 

Prnjat ibid 

kovitz 

Prnjat ibid 

Prnjat ibid 
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monitor allocations and privileges; sets, responds to and effects resource limits. 

security monitor Programmer defined monitor within an application.  This is used within Java to decide if 

connection (or other action) definitely should not be allowed. 

supervisor ? 

range checks Parameter validation. The trick is to recognize that most parameters will be correct.  

Pointers shouldn’t ne null, and should point to valid address; numbers should be within 

acceptable ranges. 

Return codes.  especially when a pointer or handle is returned.  Array indices should be 

before end; use of buffer, end of buffer 

asserts Conditional tests regarding the validity of the data, may trigger debugger 

structure checking Checks that pointers reference expected structure; possibly via magic #.  Is an assertion 

that must be ensured by the creator of the class, must be preserved by every exported 

routine of the class.  The entire data structure be test validity. 

MTTDL 
mean time to data 
loss 




MTBF 2

N(N
G
1)MTTRG

 

Used to describe a RAID system with all failures assumed to be independent.  N is the number of 

data disks in the raid group, G is the number of parity disks (eg possibly done with multiple 

RAID groups) 

MTTF 
mean time to 
failure 



 dt Reliability t 
0



  

Black’s Equation 



MTTF  AJNe

EA

kT  

where 

   A = empirical coefficient 

   J = current density 

   N = 1..3, metal composition and thickness coefficient 

   Ea= activation energy 

   k = Boltzman’s constant 

   T = temperature of metal connection 

multiple modular 
redundancy 

Each module is replaced by a series of identical modules  Their outputs are compared to 

derive a correct majority should one of the modules fail. 

operating system 
deterministic 

The worst-case execution time of each its system calls is calculable. 

real time 1. The process currently running is guaranteed to be highest-priority task  

2. Context switches have a bounded worst-case time  

3. Interrupt latency has a bounded worst-case time 

4. Prevention of unbounded priority inversion 

opposing-traffic 
sensor 

This is a fail-to-a-safe-state mechanism used in traffic lights.  It is a sensor that checks to 

see if the signal lights ever allow vehicles to enter the intersection from opposite directions.  

When sensor detects such an event, it shuts down the traffic signal’s primary controller and 

has the lights, in all directions, blink red; the condition must be cleared manually after a 

person figures out what went wrong.  Such a sensor must completely separate from the 

signal controller, and consider green, yellow, turn-lane arrows, pedestrian controls, etc. 

see also fail safe, trace buffer, watchdog timer 

patch table Delivery of patch, verify its authenticity, examining it, storing it in non-volatile memory, 

handling its failure. 

power immunity 
specifications 

IEC 61000-6-1 

Traffic intersection design 
standards: 
http://www.urbandalelibrra
ry.org/Urban_Design_Stand
ards/chapter13.pdf 
New York State 
specifications for traffic 
controllers: 
http://www.dot.state.ny.us
/traffic/files/dotmes.pdf 

http://www.dot.state.ny.us/traffic/files/dotmes.pdf
http://www.dot.state.ny.us/traffic/files/dotmes.pdf
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program 
maintenance 

“program maintenance… consists chiefly of changes that repair design defects.  Much 

more often than with hardware, these changes include added functions.  Usually they are 

visible to the user.” 

“The fundamental problem with program maintenance is that fixing a defect has a 

substantial (20-50 percent) chance of introducing another… Why aren’t defects fixed more 

cleanly?  First, even a subtle defect shows itself as a local failure of some kind.  In fact, it 

often has system-wide ramifications, usually non-obvious.  Any attempt to fix it with 

minimum effort will repair the local and the obvious, but unless the structure is pure or the 

documentation very fine, the far-reaching effects of the repair will be overlooked.  Second, 

the repairer is usually not the man who wrote the code.” 

quality baked in 
with good 
project 
management 

1. Thoughtful planning.  List of activities, milestones (to focus, and to track progress), 

temper with past data 

2. Commitment by company, but don’t over commit on deliverables 

3. Tracking: examine ‘why there are delays, and when to re-evaluate’ 

4. Teams are important 

5. Review work and progress: detect defects early, review at ones own pace 

6. Quality mechanisms, step. Requirements specification preparation, design & algorithm 

choice, coding and unit testing, integration testing, peer review meetings, 

documentation 

7. Prevent & catch defects.  Avoid adding new defects, use checklists, simplicity hides 

fewer defects and easier to maintain, complexity lends to poor testability, test as you 

implement, changes should support testing, maintenance, debugging, design should 

center on its use. 

quality metrics Testability 

Maintainability 

Clarity 

Common complexity vs essential complexity 

Which sections should be rewritten 

Guide to rewriting 

software quality Difficult due to ego reasons and ease of longevity 

Tight definition of interface 

 What goes in definition? 

 How to tell if something is missing? 

 Versioning an interface 

 How an interface is allowed to change with time 

 Variables, calls, call tables, call sequence, allocation and memory use 

Common elements of bad design: 

 Change setting X (directly or indirectly) 

 Data flow – linking failure 

radiation hard 
total ionizing dose 

accumulates radiation damage, changing threshold, leakage, etc. 

single event latch 
up 

a single event upset that creates a CMOS latch up, requiring a power cycle. 

single event upset soft error caused by an ion triggering an electrical transient 

rate monotonic 

analysis 

Optimal means of assigning relative priorities.  Can demonstrate that a set of tasks will 

always meet their deadlines, even under worst case situation.  Priority inversions must be 

bounded (i.e., unbounded inversions must be prevented).  Strict system use a preemption 

system to guarantee. In the analysis tasks are assigned a fixed priority (either absolute # or 

Fred Brooks p121-112 
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relative to other task), that is not changeable at runtime. 

The priority assigned based on how often the task runs in the worst case. 

Tasks that are given the same priority, any of the following can be done: 

1. Merge the tasks, and just run Task 1, Task 2, etc. 

2. Give them equal priority, with round robin or run-to-completion behavior. 

3. Give them adjacent unequal priorities 

See also real-time, scheduling 

real-time Real-time software measures, monitors, analyzes and controls real-world events as they 

occur; often it must respond within in strict time constraints.  This includes 

 Monitoring or data capture from the external environment 

 Analysis of data in order to transform it into forms required by the application 

 Controls to respond to external events 

 Coordinating system components. 

operating system 
design 

Low interrupt latency is often achieved by never (ever) disabling interrupts in the kernel.  

Does this mean never turning off the “global interrupt enable” or never turning of the 

specific peripheral’s interrupt enable? 

See also rate monotonic analysis 

hard real time  

soft real time  

RED 
random early 
discard 

Used only when there is automatic retry/retransmission.  Discards elements when queue 

length exceeds a threshold.  This works, not because it temporarily sheds load, but because 

the sender scales back the rate at which it sends.  At first the sender slows because it hasn’t 

recvd enough acks to continue; but it also adjusts its estimate of network load and sacles 

back the send rate. 

reliability “Probability of a system performing its purpose adequately for the period of time intended 

under the operation conditions encountered.” 

Optimistic: assumes that none or few conflicts are likely to be experienced by any 

particular user of the shared resources. 

Pessimistic: tend to assume the worst possible case and to defend against it by rather 

austere measures that often end up limiting concurrency. 

Safe: if all processes already granted resources would be able to complete in some order 

even if each such processes were to use all resources they are entitled to. 

reliability 



 e

t

MTTF  

reliability should provide adequate means for its functionality to be unaffected by faults 

possibly provide means of reducing probability of fault events. 

should provide a means of tolerating faults 

should be stable over time – its behaviour and functionality should not evolve to undermine 

any aspect of the system 

it should provide a means of recovering from faults 

Fuses that can be used to disconnect defective functional units. 

see also storage reliability 

 Reliability: Probability that it works during the desired time period 

Availability: probability that it works (over all time) 

A. L. Reibman, M. 
Veeraghavn, “Reliability 
Modeling: An Overview for 
System Designers,” IEEE 
Computer April 1991 

Siewiorek 1992i 
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Dependability 

Security 

Performance: missing deadlines 

Conformance: meets certain types of specifications 

Safety: 

issues Fault levels.  Radiation hardness, single event upsets.  CMOS latch up.  Memory error 

detection and correction.  Reliability and cross strapping. 

replaceable 
modules 
issues 

Replaceable modules – especially those designed for redundancy in a `reliable’ system: 

 Power distribution 

 Heat removal 

 IO interconnects 

 Storage access 

 CPU 

 Switching of communication 

 Switching tasks to another module 

 Switching a module off 

 Switching a module on 

requirements 
DO-178B 

Outcomes are function / effect 

Emphasis is on writing identifiable requirements, leaving the document with little context 

and discourse of the requirement. 

Challenges include the expense, little immediate/direct benefits.   

Testing that the requirement is properly implemented.  How you test that the requirements 

are the right ones. 

Analyzing how well the tests test the implementation. 

Attributes of a requirement’s construction 

Requirement by property. 

resilience “the system can recover from fault.” 

risk likelihood of a hazard, and severity of harm 

Presence (present,extension,new) – risk is technology presence by market presence. 

see also hazard, likelihood, servity 

risk identification Recognize symptoms: unrealistic specifications and margins in design and test.  

Reliability analysis, FMEA, fault tree.  How do others identify and evaluate risk?  

Insurance underwriters in setting premiums, NASA, other projects. 

Analysis techniques.  NMI 7120.4.  Requirements and Intent DOD 4245.2 templates.  

Analytic hierarchy process. 

Information gathering.  Expert interviews.  Structured questionnaires. 

Known technical risks.  Redundancy calculations.  Test margins.  Parts, materials, 

components selection. 

Analysis. Assessment criteria.  Risk baselines.  Simulation via crystal ball, prima vera 

monte carlo. 

risk management either accept it, mitigate it, or transfer it. 

risk management Process: preliminary analysis, definition, design & development, operations. 

Prnjat ibid 
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process 1. Identify & understand your major risks 

2. Decide which risks are natural to keep?  Which should you seek to transfer? 

3. Determine your capacity for risk 

4. Embed risk in all decisions / processes 

5. Align everything around risk – monitor risks, manage them 

Concept.  Risk components – technical, schedule, cost, programmatic, political.  

Measures of risk.  Definition of risk factor. 

How to assign value to risk?  

Focus on the few risks – or few groups of risk – that matter. 

Application.  Developing risk management plans.  Developing risk assessment criteria.  

Establishing risk baselines.  Establishing mitigation actions and contingency planning.  

Monitoring and reporting risks – lessons learned database, anomaly reporting. 

robust design 
principles 

 Fault tolerance 

 isolation (containment) 

 patching, each independent module has its own corrections area, well-defined 

structures in memory to allowing restarting without loss of existing flows, 

 lifespan being sufficiently shorter than the failure rate, 

 bounded behaviour. 

robust features  Update software without shutting down or rebooting 

 Handle failures without loss of operations. 

 verify existing block contents before performing patch / upgrade 

 structured logging 

robustness “The stability of the system to handle .. all eventualities and continue to operation” 

safety nothing ‘bad’ will occur; that “the risk associated with it is judged to be acceptable.” 

Term Meaning 

safety How to prevent or reduce risks or harms 

security Preventing, reducing, etc others from finding 
information or altering 

 

psychological 
perceptions of 
safety 

1. People do not believe they are at risk.  Believe that they are less vulnerable to risks 

than others and less likely to be harmed. 

2. People are unmotivated 

3. Safety is an abstract concept.  Outcomes with abstract nature tend to be less 

persuasive than concrete outcomes (“security” outcomes are selected less because 

of this?).  Costs are real and immediate compared with abstract gains / benefits. 

4. People tend to prefer a gamble-for-a-loss over a guaranteed loss. 

safety critical Concerned with the potential harm a machine might do (e.g. should few, if any, machines 

strong or heavy enough to crush a person be allowed into homes?).  The techniques 

include FMEA and design approaches: 

 Avoid contact altogether with people 

 Sensors to avoid collisions with people 

 Being made from lighter and softer materials 

 Backup systems 

 Emergency shut off switches and valves 

Prnjat, ibid 

William Lowrance, 1976 

Table 1: Distinctions  
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safety index 



 logN  

where there is probability that 1 in N people will die from the procedure, product, etc. 

safety processor Secondary processor: logical safety and electrical safety. 

security “stay in correct operation state… they are able to detect and avoid intentional attack.” 

single event 
effects 

Effects in digital and analog devices: microprocessors, DSPs, DC/DC converters, opto-

electronics, volatile & non-volatile memories 

Transient & permanent upsets 

Upset rate 

Soft errors, latch up, burn-out, SEFI 

underlying 
phenomena 

Ionization by primary particles and secondaries from nuclear collisions 

Charge collection in small structures, Charge migration and Critical Charge 

Crystalline lattice deformation 

Damage thresholds in Silicon and Gallium Arsenide 

specification 
document 

The intent is that the specification is without ambiguity, is complete, consistent, and that 

the implementation conforms to it.  There are formal methods to test the conformance.  A 

specification may be written to preserve properties in an existing implementation/. 

requirements Includes a means of identifying requirements; we use a TEXTLABEL### (eq REQ123) 

but it does not have t be that way. 

Strongly encouraged to ensure that a requirement does not have unbounded time will 

respond with X, but it is decoupled so could respond 100 usecs form now. 

Requirement should be free of negative tense: not, doesn’t, never, won’t, etc. 

Requirements for hat the user wants, software requirements, functional requirements, 

system requirements, performance requirements, constraints, etc. 

stack safety Tracking safe range to write, and regions that are not allowed.  For instance, tracking the 

writing of undefined areas of stack after the current (which can happen when a called 

subroutine returns a pointer to a variable on the stack). 

stability failures of interconnection 

failures of consistency of a part 

decomposition to a stable intermediary form that can be quickly reassembled. 

static analysis a body of techniques that can examine source or object code and identify properties – 

especially certain kinds of bugs – without executing the code. 

storage reliability 
classification 

The reliability of file systems and other storage mechanisms might be as follows: 

1. No special reliability mechanism 

2. Protects meta-data consistency, but not data consistency 

3. Protects content – data consistency 

 Most systems are #1 or moderate #2.  see also information lifecycle management 

system wear Reflected in subtle changes throughout system 

testers Testers find info about quality that helps management in making better informed 

decisions.  Testers have poor ability to prioritize; little empathy with users. 

bug testing Can manage only a small number of testers, esp. when there is a lot of bugs.  A 

person only reports a few bug: don’t want all testers to report the same bug. 

Start with a small set of testers 

Expand this set only when you get the most frequent bugs fixed.  Will lose some 

people with each round of beta expansion. 

testing 
automated 

Load & stress testing 

Prnjat, ibid 
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testing modifications localized change testing, regression testing, change completion checklist 

test cases indentifying what to test, how to design test cases, how to ensure complete coverage: 

analyzing functional specifications for testability, equivalence, path analysis, input-based 

tests, risk-based testing 

test quality Attributes of a test’s construction 

Coverage of branches 

MCDC analysis 

thread 
issues with design of 
threaded code 

Data races, lock granularity, lock ordering, modularity, blocking time, priority inversion, 

and deadlocks. 

No IO’s in atomics. 

Java RT Thread stop: ability to force it go up call tree 

 Aircraft use CORBA 

trace buffer IBM CHRP, z990 Firmware in peripherals store events to a circular buffer dedicated to 

the peripheral unit.  z990 8x64bits. Used to trace activity.  Used to alert OS of events, 

such as overheat.  Not clear it is good enough for replay 

aka flight recorder. 

data trace Traces of data flow through system 

instruction tracing Supported in some hardware.  Records the functions that were called, possibly with 

parameters, preserves order, including return value.  Record all of API calls in binary 

trace file, parameters of function, return value, procedure name.  Detailed log of calls, 

done at runtime. 

traceability Ability to follow the steps from output back to original sources.  For products, this allows 

tracing all of the products design, and features back to the original documents approved 

by the company.  For information, measurements, methodology and standards. 

trap instructions 
conditional 

When hardware and/or software detects unsatisfactory operation control is transferred to a 

special (possibly interrupt) handler, often with pertinent address & state information.  CPU 

or memory traps are main types.  Not all traps can be ignored; complexity, frequency of 

occurrence, overhead, and response times.  Can replace explicit test instructions. 

Traps are, usually a fast alternative to a variety of frequently used safety constructions 

frequently.  These constructions typically look like: 

 if (!Ptr) goto HandleError; 
 if (Idx >= Ary->length) goto HandleError; 
 if (Idx < 0) goto HandleError; 

While small and compact, comparison and branch cumulatively adds up into a 

performance overhead on well-behaved software. 

The PowerPC includes a family of conditional trap instructions, such as the following, that 

throw a trap if R15 is null: 

 teqi R15, 0x00 

The performance, in the common case, is that there is no branch, and that the comparison 

happens in parallel with other instructions.  (The CPU usually guarantees that their effects 

will be discard if the trap is thrown).  The application needs to install a custom handler to 

examine why a trap occurred, and to restore the processing if possible.  Some even include 

the ability to emulate some instructions. 

Often the handlers are OS and CPU specific, and can quite slow.  When a trap is invoked – 

access violation, manual trap, debugging trap, instruction emulations, FPU error, etc – the 

CPU goes to the kernels trap table, and passes off to its trap handler.   The kernel 

eventually passes control back to the process. 

MACH/ OS-X examples at: 
http://www.clozure.com/cg
i-bin/viewcvs.cgi/ccl/lisp-
kernel/lisp-exceptions.c 
http://www.omnigroup.co
m/mailman/archive/macos
x-dev/2000-
June/002030.html 
http://download.plt-
scheme.org/scheme/plt-
clean-
cvs/src/mzscheme/gc2/vm_
osx.c 

http://www.clozure.com/cgi-bin/viewcvs.cgi/ccl/lisp-kernel/lisp-exceptions.c
http://www.clozure.com/cgi-bin/viewcvs.cgi/ccl/lisp-kernel/lisp-exceptions.c
http://www.clozure.com/cgi-bin/viewcvs.cgi/ccl/lisp-kernel/lisp-exceptions.c
http://www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
http://www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
http://www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
http://www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
http://download.plt-scheme.org/scheme/plt-clean-cvs/src/mzscheme/gc2/vm_osx.c
http://download.plt-scheme.org/scheme/plt-clean-cvs/src/mzscheme/gc2/vm_osx.c
http://download.plt-scheme.org/scheme/plt-clean-cvs/src/mzscheme/gc2/vm_osx.c
http://download.plt-scheme.org/scheme/plt-clean-cvs/src/mzscheme/gc2/vm_osx.c
http://download.plt-scheme.org/scheme/plt-clean-cvs/src/mzscheme/gc2/vm_osx.c
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validation see also validation (infosec) 

 central tasks of validation: 

 to stimulate a design, 

 to check that the design produces results according to its specification, and 

 coverage: measure how much of a design’s possible execution space has been 

simulated and checked 

Term Meaning 

validation test that the behaviour is consistent with the 
requires, safety and efficaciousness 

verification demonstrates that the implementation matches the 
stated design. 

 

validity checking 
test setup 

An empirical process to ensure that the collected data properly represents the phenomena 

with in tolerances. 

1. Examine the Average and RMS levels before the test.  What is the normal and noise 

band?  The average value at this step is the zero level. 

2. Examine the Average and RMS levels after the test.  The sample window is not long 

enough if the singla has not returned too the settled state. 

3. Compute the maximum signal level and check that the full scale is larger, but not too 

much 

4. Calculate the signal to noise ratio: the swing at step 1, and those during the test 

5. Check the symmetry of noise around the signal level 

6. Calculate figures of merit 

7. Integrate signal to check net change 

8. Examine the channel’s spectra: is there enough bandwidth in the signal?  (The signals 

should drop off at the top end) 

9. Check the SRS and peak ratio 

10. Check initial slope 

verification “formal verification] FV is the use of tools that mathematically analyze the space of 

possible behaviors of a design, rather than computing results for particular values." 

versioning Method to distinguish between two or more versions. 

Answers questions: Is it ~100% compatible (excluding bug fixes)?  Which version is 

newer? Is it tested and approved? 

watchdog timer Those with selectable intervals, Except at the highest level of privilege, should be only 

allowed to shorten their time to expiration. 

Weibull power 
law 



log failure rate  c1t  c0
 



R(t) Get

G  constant specific to device

 = Sum of failure rates of all constituent components

1


mean time between failures

 

See also Gompertz law of mortality, reliability, risk 

word tearing unaligned access of machine word causing invalid (not merely out of date) data.  

Since one part of the word was read before the new value and another part was 

read after it was written.  This is especially true for words that cross-cache 

boundaries in SMP systems and systems that require exception handlers for 

Table 2: Between validation 
and verification  

Chuck Wright,”Expert 
Column: Automated or not, 
data-validity check plays a 
significant role in test” 
Personal Engineering, Feb 
1998 
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unaligned access. 

 

Once the products reach/exceed a satisfactory level of performance, the emphasis switches to 

reliability.  If a reliability/product is too expensive, customers work around unreliability in current 

products 

SAE ARP 4761 Guidelines and methods for conducting the safety assessment process on Civil 

Airborne Systems and Equipment. 1996 Society of Automotive Engineers. 

MOD Defence Standard 0058 Requirements for Safety Related Software in Defence Equipment. 

1996 UK Ministry of Defence 

MOD Interim Defence Standard 08-58 Issues 1: HAZOP Studies on Systems Containing 

Programmable Electronics 1996 UK Ministry of Defence 


